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Abstract. The general formalism for polarization observables in elastic electron deuteron scattering is
extended to incorporate parity- and time-reversal–violating contributions. Parity-violating effects arise
from the interference of γ and Z exchange as well as from the hadronic sector via a small parity-violating
component in the deuteron. In addition we have allowed for time-reversal-invariance–violating contributions
in the hadronic sector. Formal expressions for the additional structure functions are derived, and their
decomposition into the various multipole contributions are given explicitly.

PACS. 11.30.Er Charge conjugation, parity, time reversal and other discrete symmetries – 24.70.+s Po-
larization phenomena in reactions – 24.80.+y Nuclear tests of fundamental interactions and symmetries –
25.30.Bf Elastic electron scattering

1 Introduction

The study of polarization observables in electroweak (e.w.)
reactions is an important tool in order to investigate
small but interesting dynamical effects, which normally
are buried under the dominant amplitudes in unpolarized
total and differential cross-sections, but which often may
show up significantly in certain polarization observables.
The reason for this feature lies in the fact that such small
amplitudes or small contributions to large amplitudes may
be amplified by interference with dominant amplitudes, or
that dominant amplitudes interfere destructively leaving
thus more room to the small amplitudes. For example, this
fact has been exploited in elastic electron deuteron scat-
tering in order to disentangle the charge quadrupole form
factor from the monopole one by measuring the tensor
asymmetry T20 or equivalently the tensor recoil polariza-
tion P20. Other prominent examples are the measurement
of parity violation of the e.w. interaction, and the study
of T -noninvariant form factors in the same process.
A quite thorough discussion of polarization observables

of elastic electron-deuteron scattering in the one-photon-
approximation has been given by Gourdin and Piketty [1]
and by Schildknecht [2] for the case of parity (P ) and
time reversal (T ) invariant currents. The consequences
of P -violating contributions from weak neutral currents
on certain polarization observables for this process have
been considered previously by several authors [3–6]. Fur-
thermore, the influence of T -violation on the vector recoil
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polarization has been treated in [7–9]. However, it seems
that no systematic formalism for polarization observables
has been established for electroweak scattering including
weak neutral currents arising from Z exchange. It is the
aim of the present paper, to give a comprehensive and sys-
tematic derivation of all polarization observables for this
reaction including parity- and time-reversal-invariance–
violating contributions. To this end, we first review briefly
in sect. 2 the basic ingredients for elastic electron scatter-
ing in the one-boson-exchange approximation. The general
definition of a polarization observable is given in sect. 3,
while explicit expressions in terms of structure functions
and form factors are derived in sect. 4. Also the corre-
sponding beam, target and beam-target asymmetries are
given there. Various details are presented in several ap-
pendices.

2 Basic formalism

In this section we briefly present the basic formalism
for elastic electron deuteron scattering in the one-boson-
exchange approximation including Z exchange. The gen-
eral expression for any observable, i.e., cross-section and
recoil polarization including the dependence on beam and
target polarization, is given by

OX dσfi = (2π)−2δ(4)(d′ − q − d)

×tr(M†
fi ÔX Mfiρ̂

eρ̂d)
m2

e d
3k2

4k1, 0k2, 0

d3d′

2MdE′
d

, (1)
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where the observable OX is characterized by a subscript
X, which refers to the various polarizations of the final
deuteron state. It is represented by an appropriate op-
erator ÔX and will be specified later. The momenta of
the initial and scattered electrons (mass me) are denoted
by k1 and k2, respectively, and q2

µ = q2
0 − q 2 the four-

momentum transfer squared (q = k1 − k2). The initial
and final deuteron momenta are denoted by d = (Ed,d)
and d′ = (E′

d,d
′), respectively, and the deuteron mass

by Md. The density matrices ρ̂e and ρ̂d describe possi-
ble beam and target polarization. Covariant normaliza-
tion has been assumed, i.e., (2π)3E/m for fermions and
(2π)32E for bosons.
The amplitude Mfi contains in the lowest order, i.e.,

in the one-boson-exchange approximation, contributions
from both virtual γ and Z exchange with the latter natu-
rally being strongly suppressed since we restrict ourselves
to the low-momentum transfer region (−q2

µ � M2
Z). The

invariant matrix element thus contains two contributions
[10]

Mfi =
e2

q2
µ

j(γ)µJ
(γ)
fi, µ +

√
2G̃F j(Z)µJ

(Z)
fi, µ . (2)

Here and in the following, the superscripts γ and Z in-
dicate the electromagnetic and weak neutral current con-
tributions. The lepton and hadron currents are denoted
by j

(γ/Z)
µ and J

(γ/Z)
fi, µ , respectively. Furthermore, e denotes

the elementary charge with α = e2/4π as fine structure
constant, and G̃F is related to the weak Fermi coupling
constant GF by

G̃F(q2
µ) =

M2
Z

M2
Z − q2

µ

GF =
√
2 g2

8 cos2 θW (M2
Z − q2

µ)
, (3)

where g denotes the electroweak coupling constant, θW

the Weinberg angle, and e = g sin θW.
The lepton currents are defined by

j(γ)µ = j(v)µ , (4)

j(Z)µ = gev j
(v)µ + gea j

(a)µ , (5)

where we have introduced the lepton vector and axial cur-
rents by

j(v)µ = ū(k2) γµ u(k1) , (6)

j(a)µ = ū(k2) γµγ5 u(k1) . (7)

Furthermore, one has

gev = −1
2
+ 2 sin2 θW , (8)

gea =
1
2
. (9)

Note, that our expressions for the neutral currents con-
tain an additional factor 1/2 compared to ref. [10]. The
hadronic current Jµ is specified later. However, for formal
reasons it is convenient to distinguish the contributions

arising from the coupling to the lepton vector and axial
currents by introducing

Jfi, µ(V) = J
(γ)
fi, µ + J

(ZV)
fi, µ , (10)

Jfi, µ(A) = J
(ZA)
fi, µ , (11)

where

J
(ZV/A)
fi, µ = G̃v/a J

(Z)
fi, µ (12)

with

G̃v/a =
√
2 gev/a G̃F q2

µ e−2 . (13)

We would like to emphasize, that the argument V and
A merely indicates to which type of lepton current
the hadronic current couples. Both hadronic currents,
Jfi, µ(V) as well as Jfi, µ(A), contain vector and axial
pieces (see below eqs. (32) and (33)). Then the invariant
matrix element takes the form

Mfi =
e2

q2
µ

(
j(v)µ Jfi, µ(V) + j(a)µ Jfi, µ(A)

)
. (14)

Allowing for longitudinal electron polarization of de-
gree h, one then finds

m2
e

M2
d

tr(M†
fi ÔX Mfiρ̂

eρ̂d) =

( e2

q2
µ

)2[
ηvvµν(h)

(
WVV, µν

fi (ÔX , ρ̂d) +WAA, µν
fi (ÔX , ρ̂d)

)
+ηvaµν(h)

(
WVA, µν

fi (ÔX , ρ̂d) +WAV, µν
fi (ÔX , ρ̂d)

)]
, (15)

where one has two types of lepton tensors ηvvµν and ηvaµν ,
where the latter arises from the interference of the lepton
vector with the lepton axial current,

ηvvµν(h) = η0
µν + hη′µν , (16)

ηvaµν(h) = η′µν + hη0
µν . (17)

In the high-energy limit, i.e., electron mass me = 0, one
has

η0
µν = (k1µk2 ν + k2µk1 ν)− gµνk1 · k2

=
1
2
(kµkν − qµqν + gµνq

2
ρ) , (18)

η′µν = iεµναβk
α
2 k

β
1

=
i

2
εµναβk

αqβ , (19)

where k = k1 + k2. The hadronic tensors, appearing in
(15), are defined by

W C′C, µν
fi (ÔX , ρ̂d) =

1
M2

d

tr(Jµ ∗
fi (C′) ÔX Jν

fi(C)ρ̂d) , (20)

where C′, C ∈ {V,A}, and the trace refers to the deuteron
spin quantum numbers.
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3 Definition of a general polarization
observable

Proceeding as in the electromagnetic case by switching to
the usual three-dimensional representation of the lepton
tensors in terms of virtual boson density matrices, one
obtains in analogy to the pure electromagnetic process
the following expression for an observable:

OX
dσγ+Z

dΩlab
k2

=
2α2

q4
µ

(klab
2

klab
1

)2 ∑
λ,λ′

∑
m′,m,n′,n

ρdmn

[
(ρ0

λλ′ + hρ′λλ′)
∑

C∈{V,A}
t∗n′λ′n(C)(ÔX)n′m′tm′λm(C)

+(hρ0
λλ′+ρ′λλ′)

∑
C′ �=C∈{V,A}

t∗n′λ′n(C′)(ÔX)n′m′tm′λm(C)
]
. (21)

Here, we have introduced the t-matrices, which are re-
lated to the various current matrix elements between the
intrinsic deuteron states by

tm′λm(C) =
√

E′
dEd

Md
〈m′|Jλ(C)|m〉 . (22)

The current components refer to a coordinate system with
z-axis along q, y-axis along k1 ×k2, i.e., perpendicular to
the scattering plane, and x-axis chosen as to form a right-
handed system, i.e., x̂ = ŷ × ẑ. Also the deuteron spin
states refer to this system with q as quantization axis.
Thus λ = ±1 refers to the transverse current components
(with respect to q ), while the λ = 0 component is given
by a combination of charge and longitudinal current com-
ponent

J0 = −|q |2
q2
µ

(ρ− ω

|q |2 q · J)

= ρ− ω

q2
µ

(ωρ− q · J) , (23)

which reduces to the charge density ρ for a conserved cur-
rent. Furthermore, Ed and E′

d denote the initial and final
deuteron energies, respectively. The c.m. motion of the
initial and final deuteron states with c.m. momenta d and
d′, respectively, has been eliminated and we have switched
to noncovariant normalization.
The spherical components of the two types of virtual

boson density matrices obey the symmetry relations

ρ
0/′
λλ′ = ρ

0/′
λ′λ , (24)

ρ0
−λ−λ′ = (−)λ+λ′

ρ0
λλ′ , (25)

ρ′−λ−λ′ = (−)λ+λ′+1ρ′λλ′ . (26)

Here, ρ0/′ can be expanded into independent components
with respect to diagonal longitudinal (L) and transverse
(T ) contributions, and interference terms (LT and TT )

ρ
0/′
λλ′ =

∑
α∈{L, T, LT, TT}

δ
(′)α
λλ′ ρ(′)

α , (27)

with

δLλλ′ = δλλ′δλ0 , δLT
λλ′ = λ′δλ0 + λδλ′0 ,

δTλλ′ = δλλ′ |λ| , δTT
λλ′ = δλ,−λ′ |λ| ,

δ′Lλλ′ = 0 , δ′LT
λλ′ = |λ′|δλ0 + |λ|δλ′0 ,

δ′Tλλ′ = δλλ′λ , δ′TT
λλ′ = 0 .

(28)

The nonvanishing components are

ρL=ρ0
00 = −β2q2

ν
ξ2

2ζ , ρT =ρ0
11 = − 1

2q
2
ν

(
1 + ξ

2ζ

)
,

ρLT =ρ0
01 = −βq2

ν
ξ
ζ

√
ζ+ξ
8 , ρTT =ρ0

−11 = q2
ν

ξ
4ζ ,

ρ′LT =ρ′01 = − 1
2 β

q2
ν√
2ζ

ξ , ρ′T =ρ′11 = − 1
2q

2
ν

√
ζ+ξ
ζ ,

(29)

with

β =
|qlab|
|q c| , ξ = − q2

ν

|qlab|2 , ζ = tan2 θe
2

, (30)

where β expresses the boost from the lab system to the
frame in which the hadronic tensor is evaluated and q c

denotes the momentum transfer in this frame. In order
to make contact to the kinematic functions vα(′) in the
review of Musolf et al. [12], we note the simple relation
(for β = 1)

ρ(′)
α = − q2

µ

2ζ
vα(′) , (31)

where α ∈ {L, T, LT, TT}.
Now we will discuss the various hadronic tensors of

(21) in detail. The hadronic currents can be classified ac-
cording to their vector and axial current contributions.
The e.m. current contains only a vector piece Jγ

fi, µ while
the neutral current consists of both, vector and axial parts,
JZv

fi, µ and JZa

fi, µ, respectively. Thus for the hadron current
interacting with the lepton vector current Jfi, µ(V) one
has Jγ/ZV

v

fi, µ as vector part and J
ZV

a

fi, µ as axial part, i.e.,

Jfi, µ(V) = Jγ
fi, µ + G̃v (JZv

fi, µ + JZa

fi, µ)

= Jγ
fi, µ + J

ZV
v

fi, µ + J
ZV

a

fi, µ . (32)

The corresponding contributions to the hadron current
Jfi, µ(A) interacting with the lepton axial current are
J
ZA

v

fi, µ and J
ZA

a

fi, µ, respectively,

Jfi, µ(A) = G̃a (JZv

fi, µ + JZa

fi, µ)

= J
ZA

v

fi, µ + J
ZA

a

fi, µ . (33)

Note, that J
ZV

v/a

fi, µ and J
ZA

v/a

fi, µ are related by the ratio of
gev/g

e
a, i.e.,

J
ZV

v

fi, µ = gev/g
e
a J

ZA
v

fi, µ and J
ZV

a

fi, µ = gev/g
e
a J

ZA
a

fi, µ . (34)
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Thus J
ZV

v/a

fi, µ will be suppressed compared to J
ZA

v/a

fi, µ . Since
we allow also for parity violation in the hadronic states,
any current matrix element can be split into two contribu-
tions with opposite parity transformation properties, i.e.,

Jc
fi = J

cpc

fi + J
cpnc

fi , (35)

where, denoting the dominant component by an upper
index “pc” and the small, parity-violating component of
opposite parity by “pnc”

J
cpc

fi = pc〈f |J |i〉pc + pnc〈f |J |i〉pnc , (36)

J
cpnc

fi = pnc〈f |J |i〉pc + pc〈f |J |i〉pnc , (37)

where |〉pc denotes the dominant parity-conserving wave
function component and |〉pnc the small parity-violating
component. Thus, in order to classify the various contri-
butions, we will define two symbolic index sets CV and CA
according to the interaction with the lepton vector and
axial currents, respectively, by

CV = {γpc, γpnc, ZV
v, pc, Z

V
v, pnc, Z

V
a, pc, Z

V
a, pnc} , (38)

CA = {ZA
v, pc, Z

A
v, pnc, Z

A
a, pc, Z

A
a, pnc} . (39)

It is also convenient to introduce two other sets of current
contributions according to their behaviour under parity
transformations, whether they transform like a vector or
like an axial current. They are defined by

Cpc = {γpc, ZV
v, pc, Z

V
a, pnc, Z

A
v, pc, Z

A
a, pnc} , (40)

Cpnc = {γpnc, ZV
v, pnc, Z

V
a, pc, Z

A
v, pnc, Z

A
a, pc} . (41)

In order to characterize the opposite behaviour with re-
spect to parity, we will introduce a symbolic δ-function
by

δPc :=
{
0 for c ∈ Cpc
1 for c ∈ Cpnc

}
. (42)

Furthermore, in order to be more general we will also allow
for violation of time reversal invariance. Consequently, we
will split each of the two sets Cpc and Cpnc into two sub-
sets, one containing the contributions which respect time
reversal invariance and the other those violating it, labeled
in addition by “tc” and “tnc”, respectively,

Cpc = Cpc, tc ∪ Cpc, tnc , (43)
Cpnc = Cpnc, tc ∪ Cpnc, tnc , (44)

where the four different sets are given by

Cpc, tc =
{γpc, tc, ZV

v, pc, tc, Z
V
a, pnc, tc, Z

A
v, pc, tc, Z

A
a, pnc, tc} , (45)

Cpnc, tc =
{γpnc, tc, ZV

v, pnc, tc, Z
V
a, pc, tc, Z

A
v, pnc, tc, Z

A
a, pc, tc} , (46)

Cpc, tnc =
{γpc, tnc, ZV

v, pc, tnc, Z
V
a, pnc, tnc, Z

A
v, pc, tnc, Z

A
a, pnc, tc}, (47)

Cpnc, tnc =
{γpnc, tnc,ZV

v, pnc, tnc,Z
V
a, pc, tnc,Z

A
v, pnc, tnc,Z

A
a, pc, tnc}. (48)

Correspondingly, in order to characterize the opposite
transformation behaviour under time reversal we intro-
duce

δTc :=
{
0 for c ∈ Cpc, tc ∪ Cpnc, tc
1 for c ∈ Cpc, tnc ∪ Cpnc, tnc

}
. (49)

As a shorthand, we will use

δPT
c = δPc + δTc . (50)

Now we write the t-matrix element of (22) as a sum of the
various current contributions labeled by a superscript “c”

tm′λm(V/A) =
∑

c∈CV/A

tcm′λm , (51)

and obtain for the hadronic current tensors in (21)∑
C∈{V,A}

t∗n′λn(C) tm′λ′m(C) =
∑

C=(CV , CA)

∑
c′, c∈C

tc
′ ∗

n′λ′n tcm′λm ,

∑
C′ �=C∈{V,A}

t∗n′λn(C′) tm′λ′m(C) =
∑
c′∈CV

∑
c∈CA

(
tc

′ ∗
n′λ′n tcm′λm + (c ↔ c′)

)
. (52)

Any of these current matrix elements tcm′λm can be ex-
panded into multipoles

tcm′λm= (−)λ aλ

√
E′

dEd

Md

∑
L

iLL̂〈1m′|Oλ
Lλ(c)|1m〉

= (−)1−m′+λ aλ
∑
L

iLL̂

(
1 L 1

−m′ λ m

)
Oλ

L(c) , (53)

where aλ =
√
2π(1 + δλ0), and

Oλ
LM = δλ0 CLM + δ|λ|1 (ELM + λMLM ) (54)

denotes a general multipole. The argument “c” of the mul-
tipole Oλ

L(c) in (53) indicates the current contribution. In
(53) we have chosen the direction of the momentum trans-
fer q as quantization axis for the deuteron spin states and
have introduced for the reduced matrix elements of the
multipole operators betwee the deuteron states the nota-
tion

Oλ
L(c) =

√
E′

dEd

Md
〈1‖Oλ

L(c)‖1〉
= δλ0 CL(c) + i δ|λ|1 (EL(c) + λML(c)) . (55)

Here the factor
√

E′
dEd/Md has been included for con-

venience in the definition of the reduced charge (CL(c))
and transverse (EL(c), ML(c)) matrix elements. Further-
more, a factor “i” has been separated from the transverse
multipoles in order to have EL and ML as real quantities,
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because one has (Oλ
L(c))

∗ = (−)λOλ
L(c) (see Appendix A).

From time reversal one has the following selection rules for
the multipoles

CL(c) : (−)L+δT
c = 1 , E/ML(c) : (−)L+δT

c = −1 . (56)

On the other hand, the parity transformation yields as
selection rules

(C/E)L(c) : (−)L+δP
c = 1, ML(c) : (−)L+δP

c = −1 . (57)
Combining these selection rules, one finds as nonvanishing
multipole contributions

C0(c), C2(c), M1(c) for c ∈ Cpc, tc ,
E2(c) for c ∈ Cpc, tnc ,
E1(c) for c ∈ Cpnc, tc ,
C1(c), M2(c) for c ∈ Cpnc, tnc .

(58)

Before proceeding further, we have to specify the ob-
servableX in (1) describing any observable for the analysis
of the final target spin state. We choose the representation
X = (IM±) (I = 0, 1, 2, M ≥ 0) with a corresponding
Hermitian operator in deuteron spin space

ÔIMsigM
= cMsigM

(τ [I]
M + sigM (−)Mτ

[I]
−M ) , (59)

with

cMsigM
=

{
1

1+δM0
for sigM = + ,

i for sigM = − .
(60)

Here we have introduced a sign function by sigM := ±,
where the subscript M merely indicates to which variable
it refers. One should note, that obviously for (IMsigM ) =
(I0−) the operator vanishes, i.e., ÔI0− = 0.
The irreducible tensors τ [I] are the usual statistical

tensors for the parametrization of the density matrix of a
spin-one particle

ρd =
1
3

2∑
I=0

I∑
M=−I

τ
[I]
M P d ∗

IM , (61)

where P d
IM characterizes the initial state polarization with

P d
00 = 1.
The tensors τ [I] are normalized as 〈1||τ [I]||1〉 = √

3 Î,
where Î =

√
2I + 1, i.e., in detail

τ [I] =




13 no polarization,√
3
2 S[1] vector polarization,√
3S[2] tensor polarization,

(62)

where 13 is the unit matrix, S[1] the spin-one operator,
and S[2] = [S[1]×S[1]][2] the tensor operator whose Carte-
sian components are

S
[2]
kl =

1
2
(SkSl + SlSk)− 23 δkl . (63)

Using the relation of the ÔIMsigM
to the Cartesian spin

operators

Sx/y=∓ 1√
3
Ô11± , Sz=

√
2
3 Ô10+ ,

S
[2]
xx/yy=± 1

2
√

3
Ô22+− 1

3
√

2
Ô20+ , S

[2]
zz =

√
2

3 Ô20+ ,

S
[2]
xy=− 1

2
√

3
Ô22− , S

[2]
zx/zy=∓ 1

2
√

3
Ô21± ,

(64)

one finds for the relation of the above defined observables
OIMsigM

to the Cartesian spin observables Pk and Pkl

Px/y=∓ 1√
3
O11± , Pz=

√
2
3O10+ ,

Pxx/yy=± 1
2
√

3
O22+− 1

3
√

2
O20+ , Pzz=

√
2

3 O20+ ,

Pxy=− 1
2
√

3
O22− , Pzx/zy=∓ 1

2
√

3
O21± ,

(65)

where the Cartesian observables are defined by the
deuteron density matrix in the form

ρd =
1
3
(13 +P · S+

∑
kl

PklS
[2]
kl ) . (66)

From now on we will assume that the density matrix is
diagonal with respect to a certain orientation axis, charac-
terized by spherical angles θd and φd. Then one can write

P d
IM = P d

I e
iMφddIM0(θd) , (67)

with the deuteron vector (P d
1 ) and tensor (P

d
2 ) polariza-

tion parameters which are related to the occupation prob-
abilities pm of the different spin projection states of the
deuteron with respect to the orientation axis as quantiza-
tion axis by

P d
1 = P d

10 =

√
3
2
(p1 − p−1) , (68)

P d
2 = P d

20 =
1√
2
(3(p1 + p−1)− 2) . (69)

4 Structure functions and asymmetries

Inserting these various expressions into (21), one ob-
tains finally for an observable X = (I ′M ′sigM ′) in terms
of four types of structure functions F

(′) IMsigM
α (X) and

F̃
(′) IMsigM
α (X)

OX
dσγ+Z

dΩlab
k2

=

σMott

2∑
I=0

P d
I

I∑
M=0

∑
sigM=±

cos
(
Mφd+

π

4
(1−sigM1)

)
dIM0(θd)

×
∑

α∈{L, T, LT, TT}

[
vα

(
F IMsigM
α (X) + hF̃ IMsigM

α (X)
)

+v′α
(
hF ′ IMsigM

α (X) + F̃ ′ IMsigM
α (X)

)]
, (70)
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where we have introduced the Mott cross-section

σMott =
α2 cos2 θlab

e

2

4 sin4 θlab
e

2

klab
2

(klab
1 )3

, (71)

and switched to the v(′)
α ’s instead of the ρ

(′)
α ’s according to

(31). Their explicit form is

vL = β2

(1+η)2 ,

vT = 1
2 (1+η) + tan

2 θlab
e

2 ,

vLT = 1√
2

β
1+η sec

θlab
e

2

√
1+η sin2 θlab

e
2

1+η ,

vTT = − 1
2 (1+η) ,

v′LT =
1√
2

β
1+η tan

θlab
e

2 ,

v′T = sec
θlab

e

2 tan θlab
e

2

√
1+η sin2 θlab

e
2

1+η ,

(72)

with

η =
Q2

4M2
d

q2 = −Q2 . (73)

The structure functions are defined by

F (′) IMsigM
α (X) =

∑
C∈{CV , CA}

∑
c′,c∈C

f (′) IMsigM
α (X; c′, c) , (74)

F̃ (′) IMsigM
α (X) = 2

∑
c′∈CV , c∈CA

f (′) IMsigM
α (X; c′, c) . (75)

Here the various current contributions f (′) IMsigM
α (X; c′, c)

are given in terms of the quantities O(′) IM
α, I′M ′(c′, c) defined

below by

f (′) IMsigM
α (X; c′, c) = cM ′sigM′

×
(
O(′) IMsigM

α, I′M ′ (c′, c)+sigM ′(−)M ′O(′) IMsigM

α, I′−M ′ (c′, c)
)
, (76)

with

O(′) IMsigM

α, I′M ′ (c′, c) =

cMsigM

(
O(′) IM

α, I′M ′(c′, c) + sigM (−)MO(′) I−M
α, I′M ′ (c′,c)

)
. (77)

The basic quantities are related to the t-matrix elements
according to

O(′) IM
α, I′M ′(c′, c) =

∑
λ′,λ

δ
(′)α
λλ′ Uλ′λ IM

I′M ′ (c′, c) , (78)

where the U ’s are quadratic Hermitian forms in the t-
matrix elements

Uλ′λ IM
I′M ′ (c′, c) =
1
6

∑
n′,n,m′,m

(
tc

′ ∗
n′λ′n (τ

[I′]
M ′ )n′m′ tcm′λm (τ

[I]
M )mn+(c′↔c)

)
.(79)

Angular momentum conservation leads to the selection
rule

λ′ − λ =M ′ +M . (80)

Note, that by definition U and thus the structure func-
tions are symmetric under the interchange (c ↔ c′). Fur-
thermore, one has the following symmetry properties:(

Uλ′λ IM
I′M ′ (c′, c)

)∗
= (−)δT

c +δT
c′ Uλ′λ IM

I′M ′ (c′, c) , (81)

Uλλ′ IM
I′M ′ (c′, c) = (−)M+M ′ (

Uλ′λ I−M
I′−M ′ (c′, c)

)∗
, (82)

U−λ′−λ I−M
I′−M ′ (c′, c) = (−)δP T (c′,c)+I+I′(Uλ′λ IM

I′M ′ (c′, c)
)∗
, (83)

Uλ′λ IM
I′M ′ (c′, c) = (−)I+M+I′+M ′+δT

c +δT
c′ Uλ′λ I′M ′

IM (c′, c), (84)

where we have introduced

δPT (c′, c) = δPT
c′ + δPT

c . (85)

The first two can be combined to yield the symmetry

U−λ′−λ IM
I′M ′ (c′, c) =

(−)δP T (c′,c)+I+M+I′+M ′ Uλλ′ IM
I′M ′ (c′, c) . (86)

These symmetries are derived in the Appendix A, where
we also give a closed expression for Uλλ′ IM

I′M ′ (c′, c) in terms
of the reduced multipole matrix elements. Furthermore, by
a proper choice of the phases for the state vectors in order
to have simple time reversal properties one can make all
Uλλ′ IM
I′M ′ (c′, c)’s real or imaginary depending on whether
(−)δT

c +δT
c′ = ±1, respectively, as also shown in the Ap-

pendix A. Then one finds corresponding simple symme-
tries for the O(′) IM

α, I′M ′(c′, c)(
O(′) IM

α, I′M ′(c′, c)
)∗
= (−)δT

c +δT
c′ O(′) IM

α, I′M ′(c′, c) , (87)

O(′) IM
α, I′M ′(c′, c) = (−)M+M ′ (

O I−M
α, I′−M ′(c′, c)

)∗
, (88)

O(′) IM
α, I′M ′(c′, c) = ±(−)δP T (c′,c)+I+I′ O(′) IM

α, I′M ′(c′, c) , (89)

where the minus sign in (89) refers to the primed quantity
O′ IM

α, I′M ′(c′, c). For the interchange (IM) ↔ (I ′M ′) one
has

O(′) IM
α, I′M ′(c′, c) = (−)I+M+I′+M ′+δT

c +δT
c′ O(′) I′M ′

α, IM (c′, c). (90)

The symmetry property of (89) leads to the interesting
selection rule

O(′) IM
α, I′M ′(c′, c) =

1
2

(
1± (−)δP T (c′,c)+I+I′)O(′) IM

α, I′M ′(c′, c),

(91)

which means that

f
IMsigM
α (I ′M ′sigM ′ ; c′, c) = 0 for (−)δP T (c′,c)+I+I′

= −1,
f
′ IMsigM
α (I ′M ′sigM ′ ; c′, c) = 0 for (−)δP T (c′,c)+I+I′

= 1 .
(92)
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Another selection rule follows from (87) and (88) yielding

f (′) IMsigM
α (I ′M ′sigM ′ ; c′, c) =

cM ′sigM′

(
1+sigM sigM ′(−)δT

c +δT
c′

)
O(′) IMsigM

α, I′M ′ (c′, c). (93)

Therefore, only for sigM = sigM ′(−)δT
c +δT

c′ one has a
nonvanishing contribution. Combining these two selection
rules and introducing as a shorthand

δ
(′) I, I′

sigM sigM′ (c
′, c) =

1
4

(
1+sigM sigM ′(−)δT

c +δT
c′

)(
1± (−)δP T (c′,c)+I+I′)

, (94)

one obtains

f (′) IMsigM
α (I ′M ′sigM ′ ; c′, c) =

2 δ(′) I, I′

sigM sigM′ (c
′, c) cM ′sigM′O(′) IMsigM

α, I′M ′ (c′, c) . (95)

The remaining nonvanishing functions are listed in ta-
ble 1. In detail, one finds for them (note that by definition
M, M ′ ≥ 0)

f
IMsigM

L (I ′M ′sigM ′ ; c′, c) =

2 δI, I
′

sigM sigM′ (c
′, c) cMsigM

cM ′sigM′ δM ′M

×
(
δM0 + sigM (−)M

)
U00 I−M
I′M (c′, c) , (96)

f
(′) IMsigM

T (I ′M ′sigM ′ ; c′, c) =

4 δ(′) I, I′

sigM sigM′ (c
′, c) cMsigM

cM ′sigM′ δM ′M

×
(
δM0 + sigM (−)M

)
U11 I−M
I′M (c′, c) , (97)

f
(′) IMsigM

LT (I ′M ′sigM ′ ; c′, c) =

−4 δ(′) I, I′

sigM sigM′ (c
′, c) cMsigM

cM ′sigM′

×
(
sigM (−)M+δT

c +δT
c′ δM ′,M+1 U01 IM

I′−M−1(c
′, c)

+((−)δT
c +δT

c′ δM ′, 1−M − sigM (−)MδM ′,M−1)

× U01 I−M
I′M−1 (c

′, c)
)
, (98)

f
IMsigM

TT (I ′M ′sigM ′ ; c′, c) =

2 δI, I
′

sigM sigM′ (c
′, c) cMsigM

cM ′sigM′

×
(
sigM (−)M+δT

c +δT
c′ δM ′,M+2 U−11 IM

I′−M−2(c
′, c)

+((−)δT
c +δT

c′ δM ′, 2−M + sigM (−)MδM ′,M−2)

× U−11 I−M
I′M−2 (c′, c)

)
. (99)

The symmetry property in (90) leads to a simple rela-
tion for the interchange (IMsigM ↔ I ′M ′sigM ′)

f (′) IMsigM
α (I ′M ′sigM ′ ; c′, c) =

(−)I+M+I′+M ′+δT
c +δT

c′ f (′) I′M ′sigM′
α (IMsigM ; c

′, c), (100)

which relates the f -functions for a given target and recoil
polarization to the corresponding ones, where the target

Table 1. Listing of the sigM′ - and (I + I ′)-values for the non-
vanishing f

(′) IMsigM
α (I ′M ′sigM′ ; c′, c) for various current con-

tributions.

I ′ + I

c′-c (−)δT
c′+δT

c (−)δ(c′,c) sigM′ Unprimed Primed

pctc-pctc 1 1 sigM even odd
pnctc-pctc 1 −1 sigM odd even
pctnc-pctc −1 −1 −sigM odd even
pnctnc-pctc −1 1 −sigM even odd
pctnc-pnctc −1 1 −sigM even odd
pnctnc-pnctc −1 −1 −sigM odd even
pnctnc-pctnc 1 −1 sigM odd even

Table 2. Listing of the (M, M ′)-values for the

f
(′) IMsigM
α (I ′M ′sigM′ ; c′, c).

α (M, M ′)

L, T (0,0), (1,1), (2,2)

LT (0,1), (1,0), (1,2), (2,1)

TT (0,2), (1,1), (2,0)

and recoil polarizations have been interchanged. Thus this
symmetry reduces the number of independent structure
functions considerably and gives an additional selection
rule for (IMsigM ) = (I ′M ′sigM ′)

f (′) IMsigM
α (IMsigM ; c

′, c) = 0 , (101)

for δTc +δTc′ = 1. Another symmetry exists for the structure
functions with M > 0 and M ′ > 0 for the simultaneous
sign change sigM → −sigM and sigM ′ → −sigM ′ . First we
note from (60) the property

cM −sigM
= i sigM cMsigM

, (102)

from which follows for the above transformation:

cMsigM
cM ′sigM′ → −sigM sigM ′ cMsigM

cM ′sigM′ . (103)

Secondly, the invariance of δI, I
′

sigM sigM′ (c
′, c) is evident.

Finally, from the formal expressions in (96) through
(99) one notes that for M > 0 and M ′ > 0
f

(′) IMsigM
α (I ′M ′sigM ′ ; c′, c) is proportional to sigM for

α ∈ {L, T, LT}, whereas for α = TT it is independent
because in this case only M =M ′ = 1 gives a nonvanish-
ing contribution to (99) according to table 2. Thus with
(103) and the equivalence sigM sigM ′ ≡ (−)δT

c′+δT
c implied

by δI, I
′

sigM sigM′ (c
′, c), one finds

f (′) IM −sigM
α (I ′M ′ − sigM ′ ; c′, c) =

(−)δT
c′+δT

c f (′) IMsigM
α (I ′M ′sigM ′ ; c′, c) , (104)

for α ∈ {L, T, LT} and

f
(′) IM −sigM

TT (I ′M ′ − sigM ′ ; c′, c) =

−(−)δT
c′+δT

c f
(′) IMsigM

TT (I ′M ′sigM ′ ; c′, c) . (105)
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Explicit expressions for the nonvanishing f -functions for
the various current contributions for the case of recoil po-
larization without target polarization are listed in the Ap-
pendix B. The ones for target polarization without anal-
ysis of the recoil polarization can be obtained from these
by using the symmetry in (100).
Besides the dominant P - and T -invariance obeying

contribution c = γpc, tc, we now will restrict ourselves to
the first-order contributions with respect to the weak cou-
pling constant and to leading order T -violation. In other
words, of all the contributions of CV and CA the following
zero and first-order contributions remain:

C(0)
V =

{
γpc, tc

}
,

C(0)
A = ∅ ,

C(1)
V =

{
γpnc, tc, γpc, tnc, Z

V
v, pc, tc, Z

V
a, pc, tc

}
,

C(1)
A =

{
ZA
v, pc, tc, Z

A
a, pc, tc

}
,

(106)

or with respect to the other classification of (45) through
(48):

C(0)
pc, tc =

{
γpc, tc

}
,

C(1)
pc, tc =

{
ZV
v, pc, tc, Z

A
v, pc, tc

}
,

C(1)
pnc, tc =

{
γpnc, tc, Z

V
a, pc, tc, Z

A
a, pc, tc

}
,

C(1)
pc, tnc =

{
γpc, tnc

}
,

C(1)
pnc, tnc = ∅ .

(107)

This means, one has to make the following substitutions in
the general expression for the structure functions in (74)
and (75)∑

C=(CV , CA)

∑
c′, c∈C

→
∑

c′=c=γpc, tc

+2
∑

c′=γpc, tc, c∈C(1)
V

, (108)

∑
c′∈CV , c∈CA

→
∑

c′=γpc, tc, c∈{ZA
v, pc, tc,Z

A
a, pc, tc}

, (109)

and obtains for the structure functions one diago-
nal P - and T -conserved contribution (c = γpc, tc) to
F

(′) IMsigM
α (X) and three nondiagonal P - or T -violating
ones, namely two P -violating contributions from the
hadronic P -violation (c = γpnc, tc) and from the hadronic
axial current coupled to the lepton vector current (c =
ZV
a, pc, tc), and one hadronic T -violating contribution
(γpc, tnc). Here and in the following, “X” stands always for
an observable “I ′M ′sigM ′”. The corresponding structure
functions are determined either by the P - and T -conserved
f -functions or by the P - or T -violating ones. In view of
the selection rules for δI, I

′
sigM sigM′ (c

′, c) contained in (94),
one finds in detail for the P - and T -conserving structure
functions for which sigM = sigM ′ applies,

F IMsigM
α (X) = f IMsigM

α (X; γpc,tc, γpc,tc)

+2f IMsigM
α (X; γpc,tc, ZV

v,pc,tc), for I + I ′ even, (110)

F ′IMsigM
α (X) = f ′IMsigM

α (X; γpc,tc, γpc,tc)

+2f ′IMsigM
α (X; γpc,tc, ZV

v,pc,tc), for I + I ′ odd. (111)

Taking into account the proportionality of the neutral vec-
tor current to the e.m. current

JZv
µ = gdv J

γ
µ , (112)

where gdv = −2 sin2 θW, then one obtains

F IMsigM
α (X) = (1 + 2 gdv G̃v) f IMsigM

α (X; γpc, tc, γpc, tc) ,
for I + I ′ even, (113)

F ′IMsigM
α (X) = (1 + 2gdvG̃v)f ′IMsigM

α (X; γpc,tc, γpc,tc),
for I + I ′ odd, (114)

which means a simple renormalization by a factor almost
unity. Furthermore, for the P -violating structure func-
tions, for which also sigM = sigM ′ applies, one has

F IMsigM
α (X) = 2f IMsigM

α (X; γpc,tc, γpnc,tc)

+2f IMsigM
α (X; γpc,tc, ZV

a,pc,tc) for I + I ′ odd, (115)

F ′IMsigM
α (X) = 2f ′IMsigM

α (X; γpc,tc, γpnc,tc)

+2f ′IMsigM
α (X; γpc,tc, ZV

a,pc,tc) for I + I ′ even. (116)

Finally, for the T -violating structure functions, for which
sigM = −sigM ′ applies, one finds

F IMsigM
α (X) = 2 f IMsigM

α (X; γpc, tc, γpc, tnc)
for I + I ′ odd, (117)

F ′ IMsigM
α (X) = 2 f ′ IMsigM

α (X; γpc, tc, γpc, tnc)
for I + I ′ even. (118)

To F̃
(′) IMsigM
α (X) one has two nondiagonal P -violating

contributions from the neutral hadron current, contain-
ing vector and axial pieces, coupled to the axial lepton
current, i.e.,

F̃ IMsigM
α (X) = 2 f IMsigM

α (X; γpc, tc, ZA
v, pc, tc)

for I + I ′ even, (119)

F̃ IMsigM
α (X) = 2 f IMsigM

α (X; γpc, tc, ZA
a, pc, tc)

for I + I ′ odd, (120)

F̃ ′ IMsigM
α (X) = 2 f ′ IMsigM

α (X; γpc, tc, ZA
v, pc, tc)

for I + I ′ odd, (121)

F̃ ′ IMsigM
α (X) = 2 f ′ IMsigM

α (X; γpc, tc, ZA
a, pc, tc)

for I + I ′ even, (122)

where again sigM = sigM ′ applies. Explicit expressions
for the nonvanishing structure functions are listed in Ap-
pendix C.
It is useful to introduce scalar, vector and tensor target

asymmetries AI
d(X) (I = 0, 1, 2) and corresponding beam-

target asymmetries AI
ed(X) which can be separated by

a proper variation of the electron polarization parameter
h and the target polarization parameters P d

I . They are
defined by

OX
dσγ+Z

dΩlab
k2

= σMott S0

[
A0

d(X)+P d
1 A1

d(X)+P d
2 A2

d(X)

+h
(
A0

ed(X) + P d
1 A1

ed(X) + P d
2 A2

ed(X)
)]

, (123)
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where

S0 = vL F 00+
L (1) + vT F 00+

T (1) . (124)

Note that A0
d(X = 1) = A0

d(00+) = 1. Comparison with
(70) yields the following expressions:

AI
d/ed(X) =

I∑
M=0

dIM0(θd)

×
∑
sigM

cos
(
Mφd +

π

4
(1− sigM1)

)
A

IMsigM

d (X) , (125)

or in detail

A0
d/ed(X) = A00+

d/ed(X) , (126)

A1
d/ed(X) = cos θd A

10+
d/ed(X)

− sin θd√
2

(
cosφd A

11+
d/ed(X)− sinφd A

11−
d/ed(X)

)
, (127)

A2
d/ed(X) =

1
2
(3 cos θd − 1)A20+

d/ed(X)

−
√
3
2
sin θd cos θd

(
cosφd A

21+
d/ed(X)− sinφd A

21−
d/ed(X)

)

+
1
2

√
3
2
sin2 θd

(
cos 2φd A

22+
d/ed(X)− sin 2φd A

22−
d/ed(X)

)
,

(128)

where we have separated explicitly the dependence on the
angles of the deuteron orientation axis by introducing

A
IMsigM

d (X) =
1
S0

×
∑

α∈{L, T, LT, TT}

[
vαF

IMsigM
α (X) + v ′

αF̃
′ IMsigM
α (X)

]
,

(129)

A
IMsigM

ed (X) =
1
S0

×
∑

α∈{L, T, LT, TT}

[
vαF̃

IMsigM
α (X) + v ′

αF
′ IMsigM
α (X)

]
.

(130)

The latter asymmetries AIMsigM

e/ed (X) can be separated
by a proper choice of the orientation angles θd and φd. We
list explicit expressions of all asymmetries for sigM = +
in the Appendix D except for those which can be obtained
from the symmetry in (100), i.e., from

A
(′) IMsigM

d/ed (I ′M ′sigM ′) =

(−)I+M+I′+M ′+δtA
(′) I′M ′sigM′
d/ed (IMsigM ) , (131)

where δt = 1 for the T -violating contributions, and δt = 0
else. The ones for sigM = − can be obtained with the help

of the relations in (104) and (105) yielding

A
IM−sigM

d (I ′M ′sigM ′) =
1
S0

∑
α∈{L, T, LT, TT}

(−)δα,T T +δt

[
vαF

IMsigM
α (I ′M ′ − sigM ′)

+v′αF̃
′IMsigM
α (I ′M ′−sigM ′)

]
=(−)δt

(
A

IMsigM

d (I ′M ′−sigM ′)

− 2
S0

vTTF
IMsigM

TT (I ′M ′−sigM ′)
)
, (132)

A
IM−sigM

ed (I ′M ′sigM ′) =

(−)δt

(
A

IMsigM

ed (I ′M ′ − sigM ′)

− 2
S0

vTT F̃
IMsigM

TT (I ′M ′ − sigM ′)
)
. (133)

With respect to the explicit expressions of Appendix D
one should keep in mind the relation (112) of the neutral
hadronic vector current of the deuteron JZv

µ , which means
that the P - and T -conserving form factors of JZv

µ are pro-
portional to the corresponding e.m. form factors with gdv as
proportionality constant. In particular, this means for the
neutral current form factors appearing in the P -violating
asymmetries of Appendix D according to (32) and (33)

C
ZV/A

v

L = gdv G̃v/a C
γ
L and M

ZV/A
v

1 = gdv G̃v/a M
γ
1 ,
(134)

where G̃v/a =
√
2 gev/a G̃F q2

µ e−2 (see (13)). Furthermore,
in the P - and T -conserving asymmetries the e.m. form
factors become renormalized by a factor very close to unity
according to (113) and (114). Finally, the P -violating E1-

multipole contributions E
ZV/A

a
1 of the axial part of the

hadronic neutral current JZa
µ are related to the deuteron

axial form factor

FA
E1 =

√
E′

dEd

Md
〈1‖E1(JZa

µ )‖1〉 (135)

by

E
ZV/A

a
1 = G̃v/a F

A
E1 . (136)

At the end of this section, we will furthermore intro-
duce the usual invariant multipole form factors and struc-
ture functions depending on Q2 alone by

GC =

√
4π
3

β

1 + η
C0 , (137)

GQ =

√
3π
2

β

η(1 + η)
C2 , (138)

G(E/M)L =
√

π

η (1 + η)
(E/M)L . (139)



192 The European Physical Journal A

and

G
IMsigM

L (X) =
β2

(1 + η)2
F

IMsigM

L (X) , (140)

G
(′) IMsigM

T (X) =
1

2 η (1 + η)
F

(′) IMsigM

T (X) , (141)

G
(′) IMsigM

LT (X) =
β

(1+η)
√
2η(1+η)

F
(′)IMsigM

LT (X), (142)

G
IMsigM

TT (X) =
1

2 η (1 + η)
F

IMsigM

TT (X) , (143)

and corresponding relations for the G̃(′) IMsigM
α (X) struc-

ture functions. In terms of these invariant structure func-
tions the asymmetries in (130) and (130) become

A
IMsigM

d (X) =
1
S0

×
∑

α∈{L,T,LT,TT}

[
ṽαG

IMsigM
α (X) + ṽ′αG̃

′IMsigM
α (X)

]
, (144)

A
IMsigM

ed (X) =
1
S0

×
∑

α∈{L,T,LT,TT}

[
ṽαG̃

IMsigM
α (X) + ṽ′αG

′IMsigM
α (X)

]
, (145)

with

S0 = GC
2 +

8
9
η2 GQ

2 +
2
3
η

(
1 + 2 (1 + η) tan2 θ

2

)
GM

2 ,

(146)

and

ṽL =
(1+η)2

β2 vL ,

ṽ
(′)
T = 2 η (1 + η) v (′)

T ,

ṽ
(′)
LT =

1
β (1 + η)

√
2 η (1 + η) v (′)

LT ,

ṽTT = 2 η (1 + η) vTT ,

(147)

or in explicit form

ṽL = 1 ,
ṽT = η

(
1 + 2 (1 + η) tan2 θlab

e

2

)
,

ṽLT = sec
θlab

e

2

√
η (1 + η sin2 θlab

e

2 ) ,
ṽTT = −η ,

ṽ ′
LT = tan

θlab
e

2

√
η (1 + η) ,

ṽ ′
T = 2 sec

θlab
e

2 tan θlab
e

2 η

√
(1 + η)(1 + η sin2 θlab

e

2 ) .

(148)

Detailed expressions of the resulting asymmetries are
listed in Appendix E. Similarly to what has been said
with respect to Appendix D above, we would like to re-
mind the reader that relations analogous to (134) exist
also for the P - and T -conserving neutral invariant form
factors, namely

G
ZV/A

v

C/Q = gdv G̃v/a GC/Q and G
ZV/A

v

M = gdv G̃v/a GM ,

(149)

and that one has the relation of the P -violating invariant
form factors GZV/A

a

E1 to the deuteron invariant axial form
factor

GA
E1 =

√
π

η (1 + η)
FA
E1 , (150)

which reads

G
ZV/A

a

E1 = G̃v/a G
A
E1 . (151)

5 Discussion and summary

A schematic survey of the nonvanishing asymmetries is
given in tables 3 through 5 where we have not listed
those which are related to the listed ones by the above
mentioned symmetries. The simplest asymmetries to mea-
sure are the scalar asymmetries in table 3 involving the
determination of the deuteron recoil polarization for an
unpolarized deuteron target without or with longitudinal
electron polarization, or for the equivalent situation using
an oriented deuteron target but not measuring the recoil
polarization. We will discuss these scalar asymmetries in
some detail. The vector and tensor asymmetries do not
provide additional information but they may be used for
independent checks.

5.1 P- and T-conserving contributions

For the P - and T -conserving currents one finds as scalar
asymmetries only tensor recoil polarization components,
if the electrons are unpolarized as is well known, and our
results for them agree with the ones given in the literature,

S0 A
00 +
d (20+) = S0 T20 = − η

3
√
2

×
(
8(GC+

η

3
GQ)GQ+(1+2 (1+η)tan2 θ

2
)GM

2
)
, (152)

S0 A
00 +
d (21+) = S0 T21 =

4√
3
sec

θ

2
η

√
η

(
1 + η sin2 θ

2

)
GM GQ, (153)

S0 A
00 +
d (22+) = S0 T22 = − η√

3
GM

2 . (154)

In particular, with respect to the expressions given in
eq. (5.11) of [2], using Schildknecht’s notation, one finds

s′ 11 = Pzz =
√
2
3

O20+ =
√
2
3

A00+
d (20+) , (155)

s′ 22 = Pxx =
1
2
√
3
O22+ − 1

3
√
2
O20+ =

1
2
√
3
A00+

d (22+)− 1
3
√
2
A00+

d (20+), (156)

s′ 12 = Pzx = − 1
2
√
3
O21+ = − 1

2
√
3
A00+

d (21+) . (157)
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Table 3. Schematic survey of nonvanishing scalar asymmetries A00+
d/ed(I

′M ′sigM′).

Type Current 00+ 10+ 11+ 11– 20+ 21+ 21– 22+ 22–

PT -conserving
√ √ √ √

A00+
d (I ′M ′sigM′) P -violating

√ √ √ √ √
T -violating

√

PT -conserving
√ √

A00+
ed (I ′M ′sigM′) P -violating

√ √ √ √ √ √
T -violating

√

Table 4. Schematic survey of nonvanishing vector asymmetries A1M+
d/ed (I

′M ′sigM′) for I ′ ≥ 1.

Type Current 10+ 11+ 11– 20+ 21+ 21– 22+ 22–

PT -conserving
√ √

A10+
d (I ′M ′sigM′) P -violating

√ √ √
T -violating

√

PT -conserving
√

A11+
d (I ′M ′sigM′) P -violating

√ √ √
T -violating

√ √

PT -conserving
√ √

A10+
ed (I ′M ′sigM′) P -violating

√ √ √ √
T -violating

√

PT -conserving
√ √

A11+
ed (I ′M ′sigM′) P -violating

√ √ √
T -violating

√

The tensor component T20 is used to separate the charge
from the quadrupole form factor, while T21 allows to
determine the relative phase between the magnetic and
quadrupole form factor. The component T22 does not pro-
vide new information, it could only be taken as an inde-
pendent check of the structure function B(Q2) because
one would not need to perform a Rosenbluth separation.
With additional longitudinal electron polarization one

finds as scalar asymmetries for the leading order P - and T -
conserving currents two vector recoil polarization compo-
nents, again in agreement with the ones given in eq. (5.16)
of [2], taking into account the relations

2c11
1a

= Pz =

√
2
3
O10+ =

√
2
3S0

A00+
ed (10+)

=
2
3
sec

θ

2
tan

θ

2
η

√
(1+η)

(
1+η sin2 θ

2

)
G2

M ,(158)

2c21
1a

= Px = − 1√
3
O11+ = − 1√

3
A00+

ed (11+)

= − 4
3S0

tan
θ

2

√
η (1+η)

(
GC+

η

3
GQ

)
GM . (159)

The first one, Pz, is proportional to G2
M , whereas the com-

ponent perpendicular to the momentum transfer but in
the scattering plane, Px, contains interference of GM with
GC and GQ. The vector and tensor asymmetries listed in

the Appendix E do not contain additional information but
they could be used for consistency checks.

5.2 Parity-violating contributions

Parity violation gives a small contribution to the unpo-
larized cross-section from the E1 contribution G

ZA
a

E1 =
G̃a G

A
E1 to the hadronic neutral axial current

S0 A
00 +
d (00+) =

8
3
sec

θ

2
tan

θ

2
η

×
√
(1 + η)

(
1 + η sin2 θ

2

)
G̃a G

A
E1 GM , (160)

and also to some recoil tensor polarization components
(see Appendix E) which, however, will be very difficult to
disentangle from the leading-order contribution. One has
to look for observables for which the leading-order contri-
bution vanishes. According to table 3, the vector polariza-
tion components provide such observables. The axial form
factor G

ZV
a

E1 = G̃v G
A
E1 of the hadronic neutral axial cur-

rent as well as parity violation in the hadronic structure,
manifest in a nonvanishing axial form factor Gγ

E1, induce
vector polarization components in the scattering plane, Px
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Table 5. Schematic survey of nonvanishing tensor asymmetries A2M+
d/ed (I

′M ′sigM′) for I ′ ≥ 2.

Type Current 20+ 21+ 21– 22+ 22–

A20+
d (I ′M ′sigM′)

PT -conserving
√ √ √

P -violating
√ √

A21+
d (I ′M ′sigM′)

PT -conserving
√ √

P -violating
√ √

A22+
d (I ′M ′sigM′) PT -conserving

√

A20+
ed (I ′M ′sigM′)

P -violating
√ √ √

T -violating
√

A21+
ed (I ′M ′sigM′)

P -violating
√ √

T -violating
√ √

A22+
ed (I ′M ′sigM′) P -violating

√

and Pz [6]. They are given by

S0 Pz =

√
2
3
S0 A

00 +
d (10+)

=
2
3
η

(
1 + 2 (1 + η) tan2 θ

2

) (
Gγ

E1 + G̃v G
A
E1

)
GM

+
4
3
sec

θ

2
tan

θ

2
η

×
√
(1 + η)(1 + η sin2 θ

2
) gdv G̃a G

2
M , (161)

S0 Px = − 1√
3
S0 A

00 +
d (11+)

= −4
3
sec

θ

2

√
η

(
1 + η sin2 θ

2

)
×

(
Gγ

E1 + G̃v G
A
E1

) (
GC +

η

3
GQ

)
−8
3
tan

θ

2

√
η(1+η) gdvG̃a

(
GC+

η

3
GQ

)
GM . (162)

Obviously, these observables allow one to determine only
the combination of the axial form factors Gγ

E1 + G̃v G
A
E1.

However, one has to keep in mind that contributions pro-
portional to G̃v are suppressed by (4 sin2 θW − 1) com-
pared to those proportional to G̃a.
The same combination of the axial form factors Gγ

E1

and GA
E1 leads also to a nonvanishing asymmetry of the

differential cross-section with respect to longitudinally po-
larized electrons without deuteron polarization [5,6] ac-
cording to

S0 A
00 +
ed (00+) = 2 gdv G̃a S0 +

8
3
sec

θ

2
tan

θ

2
η

×
√
(1 + η)

(
1 + η sin2 θ

2

) (
Gγ

E1 + G̃v G
A
E1

)
GM . (163)

With respect to the neutral hadron current contributions
to the asymmetries in (161), (162), and (163), these ex-
pressions agree with those of [6] if one makes the following

identifications:

G0 ≡ GC , G2 ≡ 2
√
2
3

η GQ, G1 ≡ GM ,

FA ≡
√

η

1 + η
GA

E1, and gnV ≡ 2 gdv . (164)

Another contribution from P -violation via the larger
form factor GZA

a

E1 = G̃a G
A
E1 to observables, depending on

the electron polarization, appears for the recoil vector po-
larization Pz

S0 A
00 +
ed (10+) =√

2
3
η

(
1 + 2 (1 + η) tan2 θ

2

)
G̃a G

A
E1 GM , (165)

which, in principle, would allow one to determine sepa-
rately the neutral current axial form factor GA

E1. However,
like A00 +

d (00+) this observable will be buried by the lead-
ing order of (158). This is a general feature as a closer in-

spection of Appendix E shows, whenever GZA
a

E1 = G̃a G
A
E1

contributes to a polarization observable there is also a
leading-order contribution. The reason for this feature is
that these terms arise from the interaction of the axial lep-
ton current with the axial hadron current which is equiv-
alent to the interaction of the lepton and hadron vector
currents.

Finally, the tensor recoil polarizations offer another
possibility of obtaining a clean access to P -violation via
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the axial form factors, i.e.

S0 A
00 +
ed (20+) = −8

√
2
3

gdv G̃a

(
GC +

η

3
GQ

)
GQ

−
√
2
3

η
(
1 + 2 (1 + η) tan2 θ

2

)
gdv G̃a G

2
M

−2
√
2
3

η sec
θ

2
tan

θ

2

√
(1 + η)

(
1 + η sin2 θ

2

)
×

(
Gγ

E1 + G̃v G
A
E1

)
GM , (166)

S0 A
00 +
ed (21+) =

8√
3
η sec

θ

2

√
η (1 + η sin2 θ

2
) gdv G̃a GM GQ

+
4√
3
η tan

θ

2

√
η (1 + η)

(
Gγ

E1 + G̃v G
A
E1

)
GQ, (167)

S0 A
00 +
ed (22+) = − 2√

3
η gdv G̃a G

2
M . (168)

5.3 T-violating contributions

Looking at the tables 3 through 5, one notes that T -
violation induces very few nonvanishing observables. How-
ever, these appear always isolated, that means, they do
not have to compete with leading order contributions or
those from P -violation. The simplest candidate is the re-
coil vector polarization component Py, perpendicular to
the scattering plane [7–9], which is given by

S0 Py =
1√
3
S0 A

00 +
d (11−)

=
4
3
sec

θ

2
η

√
η

(
1 + η sin2 θ

2

)
Gγ

E2 GQ . (169)

The latter result corresponds to the one given in [7,9] if
one identifies the additional form factor G of [7,9] with
1

2 η Gγ
E2. With electron polarization one finds only one

contribution from T -violation to the scalar asymmetries,
namely to the tensor recoil polarization

S0 A
00 +
ed (21−) =

4√
3
tan

θ

2

√
η (1 + η)Gγ

E2

(
GC +

1
3
η GQ

)
. (170)

With this we will conclude the formal study of polarization
observables in elastic electron deuteron scattering.
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Appendix A. Symmetries and closed form of
Uλ′λ IM

I′M′ (c′, c)

Here we will derive the various symmetries listed in (82)
through (84). We will start by considering first the sym-
metries of the t-matrix elements given in (53). For the

reduced multipole matrix elements one finds as symmetry
properties

(Oλ
L(c))

∗ = (−)λ Oλ
L(c) , (A.1)

Oλ
L(c) = (−)L+δP

c O−λ
L (c) , (A.2)

Oλ
L(c) = (−)L+λ+δT

c Oλ
L(c) , (A.3)

which follow from hermiticity, and from parity and time
reversal transformations, respectively. First we note

(tcm′λm)
∗ =

(−)1−m′+λ aλ
∑
L

iL(−)LL̂
(
1 L 1

−m′ λ m

)
(Oλ

L(c))
∗.(A.4)

Using hermiticity and time reversal properties from (A.1)
and (A.3), yielding (Oλ

L(c))
∗ = (−)L+δT

c Oλ
L(c), one finds

(tcm′λm)
∗ = (−)δT

c tcm′λm , (A.5)

which means that all t-matrix elements are real or imag-
inary quantities depending on whether (−)δT

c = ±1, re-
spectively. From this relation and the fact that the matrix
elements of the statistical tensors are real follows directly
(81), which means that the U ’s are real or imaginary de-
pending on whether (−)δT

c +δT
c′ = ±1, respectively. Second

we consider

tc−m′−λ−m = (−)1+m′−λ aλ
∑
L

iLL̂

(
1 L 1
m′ −λ −m

)
O−λ

L (c)

=
(
(−)1−m′+λ aλ

∑
L

iLL̂

(
1 L 1

−m′ λ m

)
(O−λ

L (c))∗
)∗

,(A.6)

where in the second expression we have made use of the
symmetry of the 3j-symbol. This then gives the relation

tc−m′−λ−m = (−)δc (tcm′λm)
∗ = (−)δP

c tcm′λm , (A.7)

using (O−λ
L (c))∗ = (−)δc Oλ

L(c) from (A.2) and (A.3). The
same relation can be applied to (A.4) together with the
symmetry of the 3j-symbol with respect to a sign change
of all projections, resulting in

(tcm′λm)
∗ = (−)δP

c tcm−λm′ . (A.8)

Now we are ready to prove the symmetries of the
Uλ′λ IM
I′M ′ (c′, c). First we consider the interchange λ ↔ λ′
which gives

Uλλ′ IM
I′M ′ (c′, c) =

1
6

×
∑

n′,n,m′,m

(
tc

′∗
n′λn(τ

[I′]
M ′ )n′m′ tcm′λ′m (τ

[I]
M )mn + (c′↔ c)

)
.(A.9)

Using

(τ [I]
M )mn = (−)M (τ [I]

−M )nm (A.10)
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and renaming the indices, one obtains the symmetry of
(82)

Uλλ′ IM
I′M ′ (c′, c) = (−)M ′+M

(
Uλ′λ I−M
I′−M ′ (c′, c)

)∗
(A.11)

= (−)λ′+λUλ′λ I−M
I′−M ′ (c′, c) , (A.12)

where the latter follows from (80) and (81). The second
symmetry refers to the sign change of the various projec-
tions

U−λ′−λ I−M
I′−M ′ (c′, c) =

1
6

×
∑

n′,n,m′,m

(
tc

′ ∗
n′−λ′n(τ

[I′]
−M ′)n′m′ tcm′−λm (τ

[I]
−M )mn+(c′↔c)

)
.

(A.13)

Changing the signs of all summation indices, using (A.7)
and the property

(τ [I]
−M )−m−n = (−)I(τ [I]

M )mn (A.14)

results in (83). Finally, considering

Uλ′λ I′M ′
IM (c′, c) =

1
6

×
∑

n′,n,m′,m

(
tc

′∗
n′λ′n (τ

[I]
M )n′m′ tcm′λm (τ

[I′]
M ′ )mn+(c′↔c)

)
,(A.15)

making for the summation indices the interchanges m′ ↔
m and n′ ↔ n, using (A.10) and (A.7), one first finds

Uλ′λ I′M ′
IM (c′, c) =

(−)δP T (c′,c)+I+I′U−λ′−λ I−M
I′−M ′ (c′, c) , (A.16)

which gives combined with (83) the symmetry of (84).
At the end of this appendix, we will derive a closed ex-

pression for Uλ′λ I′M ′
IM (c′, c) in terms of reduced multipole

matrix elements. To this end we use the multipole expan-
sion of the t-matrix and the Wigner-Eckart theorem for
the occurring matrix elements of the multipole operators
and statistical tensors

〈1m′|Oλ
LM |1m〉 = (−)1−m′

(
1 L 1

−m′ M m

)
Oλ

L , (A.17)

〈1m′|τ [I]
M |1m〉 = (−)1−m′

(
1 I 1

−m′ M m

) √
3 Î . (A.18)

With the help of a sum rule for a sum over four 3j-
symbols [13]

S
[

L L′ I I ′

λ λ′ M M ′

]
=

∑
n′,n,m′,m

(−)λ+L′+I′+m′+m

(
1 L 1

−m′ λ m

)(
1 L′ 1

−n′ λ′ n

)

×
(
1 I 1

−m M n

) (
1 I ′ 1

−n′ M ′ m′

)

=
∑
J,m

Ĵ2

(
L L′ J
λ −λ′ m

)(
I I ′ J

−M −M ′ m

)


L L′ J
1 1 I
1 1 I ′


,(A.19)

one obtains in closed form

Uλ′λ IM
I′M ′ (c′, c) = (−)λ′+I′ 1

2
aλ′ aλ Î Î ′

∑
L′,L

iL
′+L L̂ L̂′S

×
[

L L′ I I ′

λ λ′ M M ′

] (
Oλ′ ∗

L′ (c′)Oλ
L(c) + (c

′ ↔ c)
)
. (A.20)

Appendix B. General expressions for the
f-functions

Here we list all nonvanishing f -functions for the case
of recoil polarization without target polarization, i.e.,
f00+
α (I ′M ′sigM ′ ; c′, c) for the various diagonal and inter-
ference contributions.
(A) Diagonal contributions:
(i) c′, c ∈ Cpc, tc:

f00+
L (00+; c′, c) =

4π
3

(
C0(c)C0(c′)+C2(c)C2(c′)

)
,(B.1)

f00 +
L (20+; c′, c) = −2π

3

(
2C0(c′)C2(c)

+2C0(c)C2(c′) +
√
2C2(c)C2(c′)

)
, (B.2)

f00 +
T (00+; c′, c) =

4π
3

M1(c)M1(c′), (B.3)

f00 +
T (20+; c′, c) = −

√
2π
3

M1(c)M1(c′), (B.4)

f ′ 00 +
T (10+; c′, c) =

√
2
3
πM1(c)M1(c′), (B.5)

f00+
LT (21+; c

′, c) = 2π
(
C2(c′)M1(c)+C2(c)M1(c′)

)
,(B.6)

f ′ 00 +
LT (11+; c′, c) =

2π
3

(
(2

√
2C0(c′) + C2(c′))M1(c)

+(2
√
2C0(c) + C2(c))M1(c′)

)
, (B.7)

f00 +
TT (22+; c

′, c) =
2π√
3
M1(c)M1(c′). (B.8)

(ii) c′, c ∈ Cpc, tnc:

f00 +
T (00+; c′, c) =

4π
3

E2(c)E2(c′), (B.9)

f00 +
T (20+; c′, c) = −

√
2π
3

E2(c)E2(c′), (B.10)

f ′ 00 +
T (10+; c′, c) =

√
2
3
π E2(c)E2(c′), (B.11)

f00 +
TT (22+; c

′, c) =
2π√
3
E2(c)E2(c′). (B.12)

(iii) c′, c ∈ Cpnc, tc:
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f00 +
T (00+; c′, c) =

4π
3

E1(c)E1(c′), (B.13)

f00 +
T (20+; c′, c) = −

√
2π
3

E1(c)E1(c′), (B.14)

f ′ 00 +
T (10+; c′, c) =

√
2
3
π E1(c)E1(c′), (B.15)

f00 +
TT (22+; c

′, c) = −2π√
3
E1(c)E1(c′). (B.16)

(iv) c′, c ∈ Cpnc, tnc:

f00 +
L (00+; c′, c) =

4π
3

C1(c)C1(c′), (B.17)

f00 +
L (20+; c′, c) =

2
√
2π
3

C1(c)C1(c′), (B.18)

f00 +
T (00+; c′, c) =

4π
3

M2(c)M2(c′), (B.19)

f00 +
T (20+; c′, c) = −

√
2π
3

M2(c)M2(c′), (B.20)

f ′ 00 +
T (10+; c′, c) =

√
2
3
πM2(c)M2(c′), (B.21)

f00+
LT (21+;c

′,c)=− 2π√
3

(
C1(c′)M2(c)+C1(c)M2(c′)

)
,(B.22)

f ′ 00+
LT (11+;c′,c)=

2π√
3

(
C1(c′)M2(c)+C1(c)M2(c′)

)
,(B.23)

f00 +
TT (22+; c

′, c) = −2π√
3
M2(c)M2(c′). (B.24)

(B) Interference contributions:
(i) c′ ∈ Cpc, tc and c ∈ Cpc, tnc:

f00 +
LT (11−; c′, c) = 2π C2(c′)E2(c), (B.25)

f ′ 00+
LT (21−; c′, c)= 2π

3

(
2
√
2C0(c′)+C2(c′)

)
E2(c).(B.26)

(ii) c′ ∈ Cpc, tc and c ∈ Cpnc, tc:

f00 +
T (10+; c′, c) =

√
2
3
π E1(c)M1(c′), (B.27)
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3
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3
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(
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)
E1(c),(B.30)

f ′ 00 +
LT (21+; c′, c) = 2π C2(c′)E1(c). (B.31)

(iii) c′ ∈ Cpc, tc and c ∈ Cpnc, tnc:

f00 +
LT (21−; c′, c) = −2π

3

(√
3C1(c)M1(c′)

−
(
2
√
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M2(c)

)
, (B.32)

f ′ 00 +
LT (11−; c′, c) =
2π
3

(√
3C1(c)M1(c′) + 3C2(c′)M2(c)

)
, (B.33)

f00 +
TT (22−; c′, c) =

2π√
3
M1(c′)M2(c). (B.34)

(iv) c′ ∈ Cpc, tnc and c ∈ Cpnc, tc:

f00 +
TT (22−; c′, c) = −2π√

3
E1(c)E2(c′). (B.35)

(v) c′ ∈ Cpc, tnc and c ∈ Cpnc, tnc:

f00 +
T (10+; c′, c) =

√
2
3
π E2(c′)M2(c), (B.36)

f ′ 00 +
T (00+; c′, c) =

4π
3

E2(c′)M2(c), (B.37)

f ′ 00 +
T (20+; c′, c) = −

√
2π
3

E2(c′)M2(c), (B.38)

f00 +
LT (11+; c′, c) =

2π√
3
C1(c)E2(c′), (B.39)

f ′ 00 +
LT (21+; c′, c) = −2π√

3
C1(c)E2(c′). (B.40)

(vi) c′ ∈ Cpnc, tc and c ∈ Cpnc, tnc:

f00 +
LT (11−; c′, c) = 2π√

3
C1(c)E1(c′), (B.41)

f ′ 00 +
LT (21−; c′, c) = −2π√

3
C1(c)E1(c′). (B.42)

Appendix C. Listing of structure functions
including P- and T-violation

Here we list all nonvanishing structure functions
F

IMsigM
α (I ′M ′sigM ′) and F̃

IMsigM
α (I ′M ′sigM ′) for sigM =

+, I ′ ≥ I, and M ′ ≥ M . Those for I ′ < I, and M ′ < M
as well as the ones for sigM = − can be obtained from
the listed ones using the symmetry relations in (100),
(104) and (105). Note that sigM ′ is fixed uniquely with
the choice of sigM .
(i) P - and T -conserved structure functions:
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(ii) P -violating structure functions:
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(iii) T -violating structure functions:
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(iv) P -violating structure functions F̃ :
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Appendix D. Listing of various asymmetries

Here we list all nonvanishing asymmetries A
IMsigM

d/ed ·
(I ′M ′sigM ′) for sigM = +, I ′ ≥ I, and M ′ ≥ M . Those
for I ′ < I, and M ′ < M as well as the ones for sigM = −
can be obtained from the listed ones using the symmetry
relations in (100), (132) and (133). Note that sigM ′ is fixed
uniquely with the choice of sigM .

(A) Asymmetries for P - and T -conserved contribu-
tions:

(i) Scalar asymmetries:
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(ii) Vector asymmetries:
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(iii) Tensor asymmetries:
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(B) Asymmetries for P -violating contributions:
(i) Scalar asymmetries:
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(iii) Tensor asymmetries:
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(C) Asymmetries for T -violating contributions:
(i) Scalar asymmetries:
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(iii) Tensor asymmetries:
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Appendix E. Listing of nonvanishing
asymmetries in terms of invariant form
factors as in Appendix D

(A) Asymmetries for P - and T -conserved contributions:
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(B) Asymmetries for P -violating contributions:
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(iii) Tensor asymmetries:
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(C) Asymmetries for T -violating contributions:

(i) Scalar asymmetries:
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(ii) Vector asymmetries:
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(iii) Tensor asymmetries:
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