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Abstract. The general formalism for polarization observables in elastic electron deuteron scattering is
extended to incorporate parity- and time-reversal-violating contributions. Parity-violating effects arise
from the interference of v and Z exchange as well as from the hadronic sector via a small parity-violating
component in the deuteron. In addition we have allowed for time-reversal-invariance—violating contributions
in the hadronic sector. Formal expressions for the additional structure functions are derived, and their
decomposition into the various multipole contributions are given explicitly.

PACS. 11.30.Er Charge conjugation, parity, time reversal and other discrete symmetries — 24.70.4+s Po-
larization phenomena in reactions — 24.80.+y Nuclear tests of fundamental interactions and symmetries —

25.30.Bf Elastic electron scattering

1 Introduction

The study of polarization observables in electroweak (e.w.)
reactions is an important tool in order to investigate
small but interesting dynamical effects, which normally
are buried under the dominant amplitudes in unpolarized
total and differential cross-sections, but which often may
show up significantly in certain polarization observables.
The reason for this feature lies in the fact that such small
amplitudes or small contributions to large amplitudes may
be amplified by interference with dominant amplitudes, or
that dominant amplitudes interfere destructively leaving
thus more room to the small amplitudes. For example, this
fact has been exploited in elastic electron deuteron scat-
tering in order to disentangle the charge quadrupole form
factor from the monopole one by measuring the tensor
asymmetry Tog or equivalently the tensor recoil polariza-
tion Psy. Other prominent examples are the measurement
of parity violation of the e.w. interaction, and the study
of T-noninvariant form factors in the same process.

A quite thorough discussion of polarization observables
of elastic electron-deuteron scattering in the one-photon-
approximation has been given by Gourdin and Piketty [1]
and by Schildknecht [2] for the case of parity (P) and
time reversal (T') invariant currents. The consequences
of P-violating contributions from weak neutral currents
on certain polarization observables for this process have
been considered previously by several authors [3—6]. Fur-
thermore, the influence of T-violation on the vector recoil
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polarization has been treated in [7-9]. However, it seems
that no systematic formalism for polarization observables
has been established for electroweak scattering including
weak neutral currents arising from Z exchange. It is the
aim of the present paper, to give a comprehensive and sys-
tematic derivation of all polarization observables for this
reaction including parity- and time-reversal-invariance—
violating contributions. To this end, we first review briefly
in sect. 2 the basic ingredients for elastic electron scatter-
ing in the one-boson-exchange approximation. The general
definition of a polarization observable is given in sect. 3,
while explicit expressions in terms of structure functions
and form factors are derived in sect. 4. Also the corre-
sponding beam, target and beam-target asymmetries are
given there. Various details are presented in several ap-
pendices.

2 Basic formalism

In this section we briefly present the basic formalism
for elastic electron deuteron scattering in the one-boson-
exchange approximation including Z exchange. The gen-
eral expression for any observable, i.e., cross-section and
recoil polarization including the dependence on beam and
target polarization, is given by

Ox dos = (2m)20W(d' — q — d)

m?d3ky  d3d’ Q)
Ak ka0 2MaE),’

xtr(MF, Ox Myip°p?)
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where the observable Ox is characterized by a subscript
X, which refers to the various polarizations of the final
deuteron state. It is represented by an appropriate op-
erator Ox and will be specified later. The momenta of
the initial and scattered electrons (mass m,) are denoted
by k1 and ks, respectively, and qz = ¢3¢ — q? the four-
momentum transfer squared (¢ = k; — ko). The initial
and final deuteron momenta are denoted by d = (E4,d)
and d' = (E),d’), respectively, and the deuteron mass
by Mg. The density matrices p¢ and p¢ describe possi-
ble beam and target polarization. Covariant normaliza-
tion has been assumed, i.e., (27)>E/m for fermions and
(27)32F for bosons.

The amplitude My; contains in the lowest order, i.e.,
in the one-boson-exchange approximation, contributions
from both virtual v and Z exchange with the latter natu-
rally being strongly suppressed since we restrict ourselves
to the low-momentum transfer region (—¢2 < M%). The
invariant matrix element thus contains two contributions

[10]

Mii = & G008, + VG j1 12,

u

(2)

Here and in the following, the superscripts v and Z in-
dicate the electromagnetic and weak neutral current con-
tributions. The lepton and hadron currents are denoted

z
byj(’Y/ ) J](c;//# )7
the elementary charge with a = e2/47 as fine structure

and respectively. Furthermore, e denotes

constant, and ép is related to the weak Fermi coupling

constant Gg by
M%

M, 2 _

_ V2g°
~ 8cos? Oy (MZ —¢q2)’

Grlqp) = (3)

where g denotes the electroweak coupling constant, fw
the Weinberg angle, and e = g sin O .
The lepton currents are defined by

jOIm = jn (4)

(5)

where we have introduced the lepton vector and axial cur-
rents by

j@m — g ](v)# 4 j@n

3 = a(ke) v ulky)

Furthermore, one has
e 1 202
9 =73 + 2sin” Oy,

1
e _ | 9
9a = 3 9)

Note, that our expressions for the neutral currents con-
tain an additional factor 1/2 compared to ref. [10]. The
hadronic current J,, is specified later. However, for formal
reasons it is convenient to distinguish the contributions
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arising from the coupling to the lepton vector and axial
currents by introducing

zVv
in,y(V) J}’Z)/L J](”z woo (10)
(Z*)
Jrin(A) = J5 0 (11)
where
ZvV/A =~ z
J(fi,ﬂ ) :Gv/a J](fz )M (12)
with
U/(L fgu/a GF ql" 2' (13)

We would like to emphasize, that the argument V and
A merely indicates to which type of lepton current
the hadronic current couples. Both hadronic currents,
Ji, (V) as well as Jg; ,(A), contain vector and axial
pieces (see below eqgs. (32) and (33)). Then the invariant
matrix element takes the form

2
e/
7(1( T i (V) +

’(a)uJZ. A)) .
pr 3 I pi,u( ))

My = (14)

Allowing for longitudinal electron polarization of de-
gree h, one then finds

2
M2

N o) (WP B, 5+ WA (B, )
'

tr(MH; Ox Myip*p?) =

s (h) (WY (Ox, %) + Wi (Ox, 5)] (15)

where one has two types of lepton tensors n,;, and 7,7,
where the latter arises from the interference of the lepton
vector with the lepton axial current,

(16)
(17)

noo(h) =mn., + hnl, .
npe(h) =, + hn), .

In the high-energy limit, i.e., electron mass m, = 0, one
has

7721, = (ki pkoy +kapkin) — guvks - ko

= %(/mky — Gy + G d?) (18)
M = i€uvashs kY

= 5emashe’, (19)

where k = k; + k2. The hadronic tensors, appearing in
(15), are defined by

! viA ~ 1 * A v ~
WEH Ox. 1) = g (T (€) Ox TH(C)) . (20)

where C’, C € {V, A}, and the trace refers to the deuteron
spin quantum numbers.
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3 Definition of a general polarization
observable

Proceeding as in the electromagnetic case by switching to
the usual three-dimensional representation of the lepton
tensors in terms of virtual boson density matrices, one
obtains in analogy to the pure electromagnetic process
the following expression for an observable:

o dovtZ 202 kRbN2
X lab 4 lab § : § :
ko? q” kl AN m/ mn',n

[0SV YN B S AV (&)l (O3 I (6

ce{v,A}
Hhatx) D b (€O wmtmoam ()] - (21)
c'#£Ce{V,A}

Here, we have introduced the t-matrices, which are re-
lated to the various current matrix elements between the
intrinsic deuteron states by

VEEL 5 e)m).

T/ am (C) - Md

(22)

The current components refer to a coordinate system with
z-axis along q, y-axis along ky x ks, i.e., perpendicular to
the scattering plane, and x-axis chosen as to form a right-
handed system, i.e., & = g X 2. Also the deuteron spin
states refer to this system with q as quantization axis.
Thus A\ = +1 refers to the transverse current components
(with respect to q), while the A = 0 component is given
by a combination of charge and longitudinal current com-
ponent

lq | w
Jo= AL, ¥ 4.
0 q,%( lq |2 )
= —q—g(wp—q J), (23)
mn

which reduces to the charge density p for a conserved cur-
rent. Furthermore, E; and E’, denote the initial and final
deuteron energies, respectively. The c.m. motion of the
initial and final deuteron states with c.m. momenta d and
d’, respectively, has been eliminated and we have switched
to noncovariant normalization.

The spherical components of the two types of virtual
boson density matrices obey the symmetry relations

0/1 0/1

Pxxr = Pxix (24)
P—A—,\/ = (*)/\H Pgw ) (25)
Ple,\f = (—)M’\ HP/,\)\' (26)

Here, p°/ can be expanded into independent components
with respect to diagonal longitudinal (L) and transverse
(T') contributions, and interference terms (LT and TT)

0/1 N a
Pxx = E , O\ Pg)v
oa€{L,T,LT,TT}

(27)
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with
68y =0m0no,  0EL = Néxo+ Ao,
v = Al 00 = 0x —w AL
(28)
% =0, 5T = [N|0x0 + [Aldxo
ST =0, ST =o0.
The nonvanishing components are
pL:p80=—ﬁ2q3§, pT=p?1——— (1+ )
prr=pf; = ﬂq cprr=p21 = 4l (29)
P/LT2061 = PT:PM = —%qz C%E,
with
lab 2
Bl € (Wi O

where [ expresses the boost from the lab system to the
frame in which the hadronic tensor is evaluated and q°
denotes the momentum transfer in this frame. In order
to make contact to the kinematic functions v, in the
review of Musolf et al. [12], we note the simple relation
(for g =1)
2
p((Jf) T or va(’) )

> (31)

where o € {L, T, LT, TT}.

Now we will discuss the various hadronic tensors of
(21) in detail. The hadronic currents can be classified ac-
cording to their vector and axial current contributions.
The e.m. current contains only a vector piece J;Zi) u while
the neutral current consists of both, vector and axial parts,
JZ i and , respectively. Thus for the hadron current
1nteracting with the lepton vector current J¢; ,(V) one

V
has J7/ i, @s vector part and Fi 88 axial part, i.e.,

1/1

sz}u(v) =
_ 7Y zy
- in,/t + inyu

N (7% Za
J}Yi,u +Gy (in,u + ‘]fi,#)
24
+ I3 (32)
The corresponding contributions to the hadron current
Jri, u(A) interacting with the lepton axial current are

zA zZA .
in, u and in_’ T respectively,

JfZ M(A) G (sz o + sz u)

= ‘]fivw + iniu ‘ (33)
Note, that il 2oy and szU/a are related by the ratio of
g’u/ga) Z e

zy z zy z:
in, w gS/gZ sz, m and sz, w gS/gZ sz, T (34)
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Thus J f”;“ will be suppressed compared to J fi ”/H“ Since
we allow also for parity violation in the hadronic states,
any current matrix element can be split into two contrlbu—
tions with opposite parity transformation properties, i.e.,

Gi=Jdpe+Jame, (35)
where, denoting the dominant component by an upper
index “pc” and the small, parity-violating component of
opposite parity by “pnc”

T2 = pel FII10) e + pnelFIT ) pe
T = el F118) pe + pel F1T10) pre »

where |),. denotes the dominant parity-conserving wave
function component and |),,. the small parity-violating
component. Thus, in order to classify the various contri-
butions, we will define two symbolic index sets Cy and C4
according to the interaction with the lepton vector and
axial currents, respectively, by

— 1% % %
CV - {’YPC’ 710"& Z’U pc? Z'u pnc’ Za pcy Z pnc}

A A
C-A - { v, pc) v pnc’ Za pc Za pnc}'

It is also convenient to introduce two other sets of current
contributions according to their behaviour under parity
transformations, whether they transform like a vector or
like an axial current. They are defined by

(38)
(39)

CPC = {7P07 v pc? Z;}pnm Z;Apc’ prnc}7 (40)
A
Cpnc = {’anCa Zv pnc Z;}pcv Zv pne? a,pc} . (41)

In order to characterize the opposite behaviour with re-
spect to parity, we will introduce a symbolic J-function

by
p . J0 forceCpy

0c 1= { 1forc e Cope [ - (42)
Furthermore, in order to be more general we will also allow
for violation of time reversal invariance. Consequently, we
will split each of the two sets C,. and Cpy,. into two sub-
sets, one containing the contributions which respect time
reversal invariance and the other those violating it, labeled

in addition by “t¢” and “tnc”, respectively,
Cpc = Lpe, te U Cpc7 tne (43)
Cpnc = Lpne, te U Cpnc, tnc (44)
where the four different sets are given by
Cpc7 tc —
{Vpc, tcy Zv ,pc,ter Z;;pnc te, szlpc ter Z;}pnc, tc}7 (45)
Cpnc, te =
% 1% A A
{’YPTLQ tes Z’u,pnc, ter Z a, pc, tc? Z v, pnc, tc? Za pc, tc}’ (46)

Cpc, tnec —

1% % A A
{FYPC, tnc Zv,pc7 tncr Za pnc, tne’ ZU pe,tner Za,pnc7 tc}7 (47)

Cpnc,tnc =
% % A A
{Vp’ﬂcy tnC7Zv,pnc, tnc’Za pc, tnc7Z v, pnc, tnc7Z a, pc, tnc} (48)
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Correspondingly, in order to characterize the opposite
transformation behaviour under time reversal we intro-
duce

0 forceC uc
5T . pc, tc pnc, tc ) 49
¢ { 1force Cpc tne U Cpnc tne ( )
As a shorthand, we will use
ST =6, +00. (50)

Now we write the t-matrix element of (22) as a sum of the
various current contributions labeled by a superscript “c”

Z tm 'Am (51)

CGCV/_A

m 'Am V/A
and obtain for the hadronic current tensors in (21)
Z tran (C) o (C) =
ce{Vv,A}
Z Z tc’)\’n fn’)\m>

C=(Cy,Ca)c,ceC

D @)t (€)=
CrACE{V, A}
Z Z ( ’A'n 7n’)\m+(c<_>cl)> . (52)
c'€Cy ceC 4

Any of these current matrix elements ¢ ,,,, can be ex-
panded into multipoles

v o deLL 1/ |02, (¢)|1m)

t m/xm (
" L3 1 L1
= e Y (o5 0r. 69
where ay = 1/27(1 + dx0), and
O a1 = 030Crn + O)a1 (ELas + AMpnr) (54)
denotes a general multipole. The argument “c¢” of the mul-

tipole 07 (c) in (53) indicates the current contribution. In
(53) we have chosen the direction of the momentum trans-
fer q as quantization axis for the deuteron spin states and
have introduced for the reduced matrix elements of the
multipole operators betwee the deuteron states the nota-
tion

VEEa

O1(c) = A, (10z(e)11)

= 0x0 Cr(c) +idx1 (EL(c) + AML(c)).  (55)
Here the factor /EE;/My has been included for con-
venience in the definition of the reduced charge (Cr(c))
and transverse (Fr(c), Mp(c)) matrix elements. Further-
more, a factor “” has been separated from the transverse
multipoles in order to have E, and M, as real quantities,
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because one has (07 (c))* = (—)*O3}(c) (see Appendix A).
From time reversal one has the following selection rules for
the multipoles

Crlc): O =1, E/Mp(c): OF =—1. (56)

On the other hand, the parity transformation yields as
selection rules

P P

(C/E)L(c): OFe =1, Mp(e): F" =—-1. (57)

Combining these selection rules, one finds as nonvanishing
multipole contributions

Cole), Cale), My(e)  for ¢ € Cperre,

EQ(C) for ce Cpc7 tnc s

El(C) for ce Cpnc, te (58)
Cl(c), Mo (C) for ce Cpnc,tnc .

Before proceeding further, we have to specify the ob-
servable X in (1) describing any observable for the analysis
of the final target spin state. We choose the representation
X =({IM=£) (I =0,1,2, M > 0) with a corresponding
Hermitian operator in deuteron spin space

A I . I
OrMsig,, = CMsig,, (T][\/[] + SlgM(_)MTLJ]w) , (59)
with
—Lt— for sig,; = +
. — 140 M )
CMsig,, { iMO for sig,, = —. (60)
Here we have introduced a sign function by sig,, := =+,

where the subscript M merely indicates to which variable
it refers. One should note, that obviously for (I Msig,,) =
(I0—) the operator vanishes, i.e., Oro— =0.

The irreducible tensors 71l are the usual statistical
tensors for the parametrization of the density matrix of a
spin-one particle

1 2 I
pd:§z Z T][\g']PIdJ\Za

(61)

where Pf,, characterizes the initial state polarization with
P =1.

The tensors 71/} are normalized as (1||r1||1) = /31,
where T = Vv2I + 1, i.e., in detail

15 no polarization,

U —

\/g SH vector polarization, (62)

V3 S[P tensor polarization,

where 13 is the unit matrix, S the spin-one operator,
and S =[S x SI]E] the tensor operator whose Carte-
sian components are

1 2
Sl[€2l] = i(SkSl + SlSk) 3 Okl - (63)
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Using the relation of the astigA4 to the Cartesian spin
operators

S, = \/g()m ,
SE =2 O
5[2]

zx/zy

Sw/y::':%olli )
5 ~ ~
Sﬂ[wi/yy:j:2_\1/5022+ - ﬁOm* )

Siy=—1-00s_,

—— 10
e —?2\/502&7

(64)

one finds for the relation of the above defined observables
Orsig,, to the Cartesian spin observables Py, and Py

P.=/20u;,

P,.= g 020+ ’
sz/zy::F%\/gOZli )
(65)

Pw/y::F%(Qll:I: )

1 1
P:m:/yy:iQ_\/g022+ - mo20+ )

ny:_%\/gOZQ—7

where the Cartesian observables are defined by the
deuteron density matrix in the form
1
p! = 5(13+P'S+ZPMS/5])- (66)
ki

From now on we will assume that the density matrix is
diagonal with respect to a certain orientation axis, charac-
terized by spherical angles 64 and ¢4. Then one can write

Piyy = Pie™®4d} 1 (0a) (67)
with the deuteron vector (P{!) and tensor (Pg) polariza-
tion parameters which are related to the occupation prob-
abilities p,, of the different spin projection states of the
deuteron with respect to the orientation axis as quantiza-
tion axis by

3

5(}71 —p—1)7

1
P = Py = o (3(p1 1)~ 2)

Pld:Pld0:

4 Structure functions and asymmetries

Inserting these various expressions into (21), one ob-
tains finally for an observable X = (I'M’sig,; ) in terms

of four types of structure functions F{) M8 (X)) and
ﬁé/) IMsigy, (X)

doVtZ

Xdﬂ—}gb =
2 I
OMott ;P}i Z Zcos (Mq/)d—l—%(l—sing))d{Vm(ﬁd)

M=0sig,, ==+
<D

a€{L,T, LT, TT}

o, (hF(;IJVlsigM (X) + F'1Msign (X))} 7

(v (P () 4 FLMe (X))

(70)
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where we have introduced the Mott cross-section

lab
2 20 lab
e k2

OMott — a 3 (71)
4 sin* 91; (klfb)3

and switched to the vé) s instead of the pg)’

(31). Their explicit form is

s according to

2

UL = e i
v = (1+n) + tan?
v 1 oldb 1+’I’] sin? e
LT = 75
V2 141 =T (72)
vrT = _2(1+n) ’
’ ﬁ lab
VLT = 5 T tan —5—,
) glab
vl = sec %27 tan o [ LS T
T — 2 1+n ’
with
Q° 2 2
n=rm ¢ =-Q. (73)
402

The structure functions are defined by

FU IMsigy () = Z ng) IMsien (X, ¢ ¢), (74)
Ce{Cy,Ca} ¢/, cEC
ﬁ(g/) IMsigM(X) -9 Z fo(cl) IMSig]VI(X; c/,c). (75)

¢'€Cy, cEC A

1) IM
Here the various current contributions £ **5&u (X; e

are given in terms of the quantities (’)g, ML (¢ ¢) defined
below by

fO Mt (X ! ¢) = CM'sig

) I Msi . I Msi
x (O 1ARE € ) +sigar (M O JME ), (76)

with

OV [INEM (! ¢) =

IM . I—-M
earsisy, (O0 A€ 0) +sigay (=) O 1€ e)). (77)

The basic quantities are related to the t-matrix elements
according to

oV (¢, Zéxlf“ UM o), (78)

where the U’s are quadratic Hermitian forms in the ¢-
matrix elements
UM (o) =

1 ’ 4 ’
LS (e D s (7t (). (79)
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Angular momentum conservation leads to the selection
rule
N—-A=M+M. (80)

Note, that by definition &/ and thus the structure func-
tions are symmetric under the interchange (¢ < ¢'). Fur-
thermore, one has the following symmetry properties:

(u}/MM(C C)) = ()% P UNAM (L o) |
UMM Ee) = MM (U2 )
I—/AM/AI M o) = (- )5PT(c e)+I+1' (u/\ AIM (1 )> (83)

(_)I+M+I’+M’+6CT+6CT, UM I’M’(
M

dc), (84)

(81)

(82)

/
Up M e) =
where we have introduced

SPT(c! ¢) = 65T + 677 . (85)

The first two can be combined to yield the symmetry
UI/M/ )\IM(C/ C) =

(— )5PT(C )+ I+M+I'+M’ UAA IM(C o).

(86)
These symmetries are derived in the Appendix A, where
we also give a closed expression for UM} /M (¢, ¢) in terms
of the reduced multipole matrix elements. Furthermore, by
a proper choice of the phases for the state vectors in order
to have simple time reversal properties one can make all
UM (¢, ¢)’s real or imaginary depending on whether
(7)5CT+5cT’ = =1, respectively, as also shown in the Ap-
pendix A. Then one finds corresponding simple symme-

tries for the OV )I,M,(c’, c)

(VI ) = (T OV (), (87)
O hi(ce) = (MM (0L (¢0) , (89)

O(/)II,AA@, (dye)=

PT (1 ’ IM
i(_)é (¢ o) +I+I O(/) M ' c), (89)
where the minus sign in (89) refers to the primed quantity
}(;);{J}{M,(c’, ¢). For the interchange (IM) « (I'M’) one
as

(1 IM

OL P (€)= (=) PMHIEA s s o B

d,c).(90)
The symmetry property of (89) leads to the interesting
selection rule

Og,)}%/(c', c) = (1 + (—)JPT(C,’C)HH,) Og}{%,(c’, o

(91)

N | =

which means that
fiMSigM (I'M’sigy; ¢e) =0 for (f)‘sPT(C”CH”I’ =-1,

f(',tIMSigM (I'M'sigy;; c,¢) =0 for (—)5PT(C,’C)+”I' =1.
(92)
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Another selection rule follows from (87) and (88) yielding
f(g/) I Msigy, (I’M'SigM,; C/, C) _

i i T+o7 IM
CM'sig (1+SlgMSIgM/(—)6c +5C/) O(/) MS/IgM(

c)- (93)

Therefore, only for sigy, = sigy(—)% 9 one has a
nonvanishing contribution. Combining these two selection
rules and introducing as a shorthand

nrnr foy
sigprsigpy (C ’ C) o

1 . . T T PT ce ’
7 (1sigysign 7700 ) (14 (PO (94)

one obtains
fé/) IMsig, (I/M,SigM/‘ J C) _

nir,r IN[SlgM(C C).

/
singigM,(C C) CM’SlgM/O( I’ M/’ (95)

The remaining nonvanishing functions are listed in ta-
ble 1. In detail, one finds for them (note that by definition
M, M’ >0)

IMsig]W 7 /
11 (I'M'sigy;; ¢, c) =
1,1
2 651g1\451gM/ (C ) C) CMsig,; CM’sig, O M

x (dar0 + sigar(—)™) UM (),

(’) I Msig g (I/M/

(96)

Y A
sigys ¢y e) =

nIr / .
4 651gM$gM/ (C ’ C) CMsig,, CM'sig Omrm

x(éMoJrsigM( ) )U},ll\ff M e,

(/) I Msig,, (I M/

(97)

sigyp; cyc) =
I, r . '
—4 6mnggM/ (C 9 CMsigy CM'sigyy
: M+357 4575
x(51g (M0 Sy ap U1 (o)

()% 08 S 1 ar — sigay ()M Sarr, a1-1)
X Z/{?}NI[ ]1\/[(0 7c)) ,
1B (I Msigy; ¢ c) =

2651 (cd,c)e c
sigarsigass Msig,, CM'sig ;s

(98)

X (sigar (=) 400 0w Up M o)

()% 02 8ar 2 ar + sigay (=)™ Sarr, ar—2)

X UZAI=M (o c)). (99)

The symmetry property in (90) leads to a simple rela-
tion for the interchange (IMsig,, < I' M'sig),)

O TS (I M sig s ) =
(=) PPN RO (0 IM S (1M sig 3 ¢ ), (100)

which relates the f-functions for a given target and recoil
polarization to the corresponding ones, where the target
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Table 1. Listing of the sig /- and (I + I')-values for the non-

) I Msi .
vanishing fa EM(I'M'sig,,; ¢, c) for various current con-
tributions.

I'+1
d-c (—)53’ +oe ()" sig,,, Unprimed Primed
pcte-pete 1 1 sigy, even odd
pncte-pcte 1 —1 sigy, odd even
pctne-pete -1 —1 —sig,, odd even
pnctne-pete -1 1 —sig,; even odd
pctne-pncte -1 1 —sig,, even odd
pnctne-pncte —1 —1 —sigy, odd even
pnctne-petne 1 —1 sigy, odd even
Table 2. Listing of the (M,M')-values for the
fé/) I Msigps (]'M/SigM/; C/, C).
o (M, M)
LT (0,0), (1,1),(2,2)
LT (0,1),(1,0),(1,2), (2,1)
T (0,2), (1,1),(2,0)

and recoil polarizations have been interchanged. Thus this
symmetry reduces the number of independent structure
functions considerably and gives an additional selection
rule for (IMsig,,) = (I'M'sig,;/)

FO M (I Msigys ) =0, (101)
for 67467 = 1. Another symmetry exists for the structure
functions with M > 0 and M’ > 0 for the simultaneous
sign change sig,, — —sig,, and sig,;, — —sig,; . First we
note from (60) the property

CM —sig), — 18igyy CMsig,, » (102)
from which follows for the above transformation:
CMsig,; CM'sigy;r — 7SigM SigM’ CMsig,, CM'sig, - (103)

Secondly, the invariance of 531g Sig (c,c) is evident.
Finally, from the formal expressions in (96) through
(99) one notes that for M > 0 and M’ > 0
fg) IMSIgM(I’M’mgM/ c’,c) is proportional to sig,, for
o € {L,T,LT}, Whereas for a = TT it is independent
because in this case only M = M’ = 1 gives a nonvanish-
ing contribution to (99) according to table 2. Thus with

(103) and the equivalence sig,, sigy; = (— )‘5 +oe

by 651

signrsigar/

< implied
(¢, ¢), one finds

FOIM =siear (TN — sigy s ¢ e) =

(_)554»5? fé/) IMsig (I'M'sigy,; ¢ c), (104)
for o € {L,T, LT} and
g%IM*51gM (I M — SigM/; C/,C) —
_(_)65-‘4-53 fj(%fMSigM (I/M/SigM,; C/,C) . (105)
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Explicit expressions for the nonvanishing f-functions for
the various current contributions for the case of recoil po-
larization without target polarization are listed in the Ap-
pendix B. The ones for target polarization without anal-
ysis of the recoil polarization can be obtained from these
by using the symmetry in (100).

Besides the dominant P- and T-invariance obeying
contribution ¢ = 7y, ¢, we now will restrict ourselves to
the first-order contributions with respect to the weak cou-
pling constant and to leading order T-violation. In other
words, of all the contributions of Cy and C4 the following
zero and first-order contributions remain:

C\(;O) = {'ch, tc} )

Cf40) = (Z)a

1 (106)
C\(j) = § Vpne, tes Vpe, tnes Z’l\)},PCv ter vac tc}’

1
C,(A) = Z{f‘pc ter Z;‘pc tc}’

or with respect to the other classification of (45) through
(48):

0
C;c)tc = 3 Vpc, tc} )

o _ 1% A
Cpc tc — Zv,pc, ter Zv,pc, tc (>
% A
Vpne, tes Za,pc,tu Za,pc,tc} ’
1 _
Cpc tne — \ Vpe, tne (5

cH .

pnc, tnc

C(l) _

pnc,tc —

(107)

This means, one has to make the following substitutions in
the general expression for the structure functions in (74)
and (75)

IPINDV P VLI S
CV CA) ¢, ceC C/:C:'ch,tc C,:'ch,tc,cecg)

>, - > . (109)
C,GCV’CGC'A C/:FYPCYtC’CG{Zlﬁpc,tc’Z(ﬁpc,tc}

and obtains for the structure functions one diago-
nal P- and T-conserved contribution (¢ = 7pe ¢c) tO

) IMsign (X) and three nondiagonal P- or T-violating
ones, namely two P-violating contributions from the
hadronic P-violation (¢ = Ypne, tc) and from the hadronic
axial current coupled to the lepton vector current (¢ =
Z;} pe.te)s and one hadronic T-violating contribution
(Ype, tnc)- Here and in the following, “X” stands always for
an observable “I’M'sig,,”. The corresponding structure
functions are determined either by the P- and T-conserved

f-functions or by the P- or T-violating ones. In view of
5bIlgIN[blgA4/ (¢, c) contained in (94),
one finds in detail for the P- and T-conserving structure

functions for which sig,, = sig,,, applies,

FéMSigM (X) = f(iMSigM (X§ Vpe,tes 'ch,tc)
+2 IV (X ype e, Z for I + I' even, (110)

u,pc,tc)’
FIMS8 (X) = fol M8 (X et Ypete)

2 fIMSiEN (X sy oy ZY for I 4 I' odd. (111)

v,pc,tc)7

the selection rules for
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Taking into account the proportionality of the neutral vec-
tor current to the e.m. current

JZv =gy, (112)
where g4 = —2 sin? Oy, then one obtains
FaIMSigM (X) = (1 + 2 gg év) fi]\/[b‘igM (X7 /Vpc, tcy ’Vpc, tc) )
for I + I’ even, (113)
F(;IMSigM (X)=0+ 2ggév)f<;IMSigM (X; Vpe,tes 'Y;vc,tC)v

for I +I' odd, (114)

which means a simple renormalization by a factor almost
unity. Furthermore, for the P-violating structure func-
tions, for which also sig,, = sig,,, applies, one has

FO{MSigM (X) = 2f(£MSigM (Xv ’ch,tca ’anc,tc)
+2féMSigM (X;Wpc,tmzz‘zj,pc,tc) for I+ 1’ odd,
F(LIMSigM (X) = QfQIMSigM (Xv ’ch,tw 7pnc,tc)

42 f/IMsign (X Ype,tes Zzpc’tc) for I + I' even. (116)

(115)

Finally, for the T-violating structure functions, for which
sig,; = —sig,, applies, one finds

FaIMSigM (X)=2 faIMSigM (X; Ype, tes Vpe, tne)
for I + I’ odd, (117)

Foi [Msign (X)=2 f;IMSigM (X; Vpe, tes Vpe, tne)
for I + I’ even. (118)

To E)Msi8n (X) one has two nondiagonal P-violating
contributions from the neutral hadron current, contain-
ing vector and axial pieces, coupled to the axial lepton
current, i.e.,
FMs (x) =

I Msi . A
2f(y SeM (Xﬂ Vpe, tes Zv,pc, tc)

for I + I’ even, (119)
ﬁaIMSigM (X) =2 fliMSigM (X’ 71007 tes Zlf}pc, tc)

for I + I’ odd, (120)
ﬁoﬁ IMSigM (X) =2 f(;IMSigM (X’ ’YPC, tes Z’L‘;A,pc, tc)

for I + I’ odd, (121)
ﬁoi I Msig,, (X) = 2fél]\/fsigM (X5 Ype, tes Z(;A,pc, »

for I + I’ even, (122)

where again sig,; = sig,,, applies. Explicit expressions
for the nonvanishing structure functions are listed in Ap-
pendix C.

It is useful to introduce scalar, vector and tensor target
asymmetries AL (X) (I =0,1,2) and corresponding beam-
target asymmetries Al;(X) which can be separated by
a proper variation of the electron polarization parameter
h and the target polarization parameters PId. They are
defined by

do+4
*apn
+h (A2(X) + P AL(X) + Pf A%(X))],

= oot So | AG(0)+PY AY(X)+P5 A3(X)

(123)
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where
So = vg, F2OF (1) + vp F2OH(1). (124)

Note that AY(X = 1) = A%(004) = 1. Comparison with
(70) yields the following expressions:

Z diso(6a)

X Z cos (Mgbd + Z(l - sing)> AéMSigM (X), (125)

sig s

d/ed

or in detail

AQyea(X) = AGH(X), (126)
d/ed(X) = costly Ad/ed( )
_sinf . _

d ( COS ¢q A;}*d X) —sin¢qg A;}ed( )) , (127)

1
= 5 (3 cosfy — 1) A7)1,(X)

2
d/ed
—\/g sinfy cos 4 (cos bg A2VT (X)) — singg A2V (X ))
2 d/ed d/ed

1 /3 .
+2\/;s1n20d(cos2¢d/133:d( X)— s1n2q§dAd/ed( )),
(128)

where we have separated explicitly the dependence on the
angles of the deuteron orientation axis by introducing

si, 1
AR (X) = o

So
XY [pa B (X) 4o Fy M ()]
ae{L,T,LT, TT}

9

(129)

IMsi 1
Aed b1 (X) =

So
x

[ Ffsean (X) 4 o 0550 ()|
ac{L,T,LT, TT}

(130)

IMsigy,
e/ed
by a proper choice of the orientation angles 65 and ¢4. We
list explicit expressions of all asymmetries for sig;, = +
in the Appendix D except for those which can be obtained
from the symmetry in (100), 4.e., from

The latter asymmetries A (X) can be separated

A (i)~

( >I+M+I +M' +5tA(/)I M'sigyp (IMSlgM)

aled (131)

where §; = 1 for the T-violating contributions, and §; = 0
else. The ones for sig;, = — can be obtained with the help
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of the relations in (104) and (105) yielding

AP (I M sigy,) =

1 .
S— Z (_)§Q,TT+& [UaFéklmgM (I/M/ _ SigM/)
O we{L,T,LT,TT}

+U;ﬁ(;IMSigM(I’M’— sigM,)} =(—)% (AflMSigM (I' M"™sig )

— g o P (UM sigy ) ) (132)
Agiw Sen (IlM/SlgM/) =

()% (AL (1M = sigy)

- S% vpp EEMSEM (g — sigM,)) . (133)

With respect to the explicit expressions of Appendix D
one should keep in mind the relation (112) of the neutral
hadronic vector current of the deuteron J f”, which means
that the P- and T-conserving form factors of J 5” are pro-
portional to the corresponding e.m. form factors with g2 as
proportionality constant. In particular, this means for the
neutral current form factors appearing in the P-violating
asymmetries of Appendix D according to (32) and (33)

ZV/.A

~ /A ~
Crv :ggGv/aCz and Mlz’\’} :ggGv/aMf,
(134)
where CNJU/Q = ﬁgg/a Gr qi e~2 (see (13)). Furthermore,

in the P- and T-conserving asymmetries the e.m. form
factors become renormalized by a factor very close to unity
according to (113) and (114). Finally, the P-violating E'1-

V/A
multipole contributions Elz @ of the axial part of the
hadronic neutral current Jf“ are related to the deuteron
axial form factor

VEE;
Fgy = Md SUENEHOTIY (135)
d
by
B 2 G A (136)

At the end of this section, we will furthermore intro-
duce the usual invariant multipole form factors and struc-
ture functions depending on Q? alone by

4w B
Ge = 3 m Co, (137)
_ 3T p
Go =1/ P Cy, (138)
e T B (139)
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and
GIMsign () LFIMS@M X 140
L ( ) (1+77)2 L ( )7 ( )
” 1 si
Gg) IMsig), (X) = m Fél) IMsigy, (X)), (141)
G(/) IMsigy (5 #F(/)I]\/fsigM X), (142
LT (X) (T+n)y/2n(Try) 7 )
IMSigju X — #FIMSigM X 14
GTT ( ) 277(1+77> T ( )7 ( 3)

and corresponding relations for the G ™M¥8¥ (X)) struc-
ture functions. In terms of these invariant structure func-
tions the asymmetries in (130) and (130) become

1
S()
[ GEMS () 4+, Gl Mo ()] (144)

AéMSigM (X) =

x>
a€{L,T,LT,TT}

si 1
Agg/[ gM(X) -

So
x 3 [FaGEMEE (X) 4, GIME (X)], (145)
ae{L,T,LT,TT}

with

8 2 0
SO:GC2+§772GQ2+§77< +2(1 + n) tan? —)GM ,

(146)
and
T = (1'577)2 oL,
N((’)) 20 (1+n) vy, (147)
!
LT_% L+n)y/2n(1+n) vLT?
orr =21 (1+n)vrr,
or in explicit form
v =1,
_ o glab
or zn(1+2(1+77) tan ET),
- 91ab . glab
SEREN e N
UrT = —1)

7lb
U)p = tan 062 n(l+mn),

-~ el'Lb Gllb
Up = 2 sec —5— tan = 77\/(1—1—7))(1—1—77 sin

2

9 glab
5 ) -

Detailed expressions of the resulting asymmetries are
listed in Appendix E. Similarly to what has been said
with respect to Appendix D above, we would like to re-
mind the reader that relations analogous to (134) exist

also for the P- and T-conserving neutral invariant form
factors, namely

V/A ~ V/A ~
Gevg =90 GuaGorg and Gy~ =gl Gua G,
(149)
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and that one has the relation of the P-violating invariant

ZY/A . . .
form factors G5  to the deuteron invariant axial form

factor
T
G4, =,|—— Ff4,, 150
E1l n (1 + 7}) E1l ( )
which reads
ZV/A ~
GE(i = Gv/a Ggl . (151)

5 Discussion and summary

A schematic survey of the nonvanishing asymmetries is
given in tables 3 through 5 where we have not listed
those which are related to the listed ones by the above
mentioned symmetries. The simplest asymmetries to mea-
sure are the scalar asymmetries in table 3 involving the
determination of the deuteron recoil polarization for an
unpolarized deuteron target without or with longitudinal
electron polarization, or for the equivalent situation using
an oriented deuteron target but not measuring the recoil
polarization. We will discuss these scalar asymmetries in
some detail. The vector and tensor asymmetries do not
provide additional information but they may be used for
independent checks.

5.1 P- and T-conserving contributions

For the P- and T-conserving currents one finds as scalar
asymmetries only tensor recoil polarization components,
if the electrons are unpolarized as is well known, and our
results for them agree with the ones given in the literature,

So AP T(204) = 5o Too = —

_n
32
9
X (S(GC+3GQ)GQ+(1+2 (14+7)tan? §)GM2)7 (152)

So AP T (214) = Sy Ty =

4 0 .50
%secin\/n(lJrnsm 5) Gum G, (153)
So A20+(22 +) = SpThy = — U GM2 . (154)

V3
In particular, with respect to the expressions given in
eq. (5.11) of [2], using Schildknecht’s notation, one finds

V2 V2

§1—p,. = 5 Osy = 5 A30+(20+), (155)
§2_p _ 1 Oas Os0+ =
Tx 2\/ + = 3f +=
2\/ AOO+(22+)_3\—f AT (204), (156)
§12-p, = Oa14 = ———= APT(214). (157)

2\/3 2\/3
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Table 3. Schematic survey of nonvanishing scalar asymmetries Ag?:d(I'M’sigM,).

Type Current 00+ 10+ 114+ 11— 20+ 214+ 21— 224 22—
PT-conserving Vv v v YV
A20+ (I' M'sig 1) P-violating vV Vv v v J
T-violating
PT-conserving Vv Vv
A22+ (I' M'sig 1) P-violating v i v v J N
T-violating v

Table 4. Schematic survey of nonvanishing vector asymmetries A+ (1’ M'sig,,) for I' > 1.

d/ed

Current 10+

Type

11+

11- 20+ 214 21— 224+ 22—

PT-conserving
P-violating
T-violating

v
AT (I Msigy)

v

vV

PT-conserving
P-violating
T-violating

AV (I' Msig )

v
v
v

PT-conserving
P-violating
T-violating

Aig+ (]/M,SigM/)

<<
<L

PT-conserving
P-violating
T-violating

AL (' Msig )

L L] <

<<

The tensor component Ty is used to separate the charge
from the quadrupole form factor, while 75; allows to
determine the relative phase between the magnetic and
quadrupole form factor. The component T55 does not pro-
vide new information, it could only be taken as an inde-
pendent check of the structure function B(Q?) because
one would not need to perform a Rosenbluth separation.

With additional longitudinal electron polarization one
finds as scalar asymmetries for the leading order P- and T-
conserving currents two vector recoil polarization compo-
nents, again in agreement with the ones given in eq. (5.16)
of [2], taking into account the relations

2
C11 00+
— = \ 55 Aog (1
lag \/7010+ 35 0+)

2 6

=3 sec§ tan = n \/(1—}—77) (1+nsm —) G2,,(158)
1 1

2 _p On1y -5 A%F(11+)

Il
|
+
®
=]
|

n (14+n) (Gc—i—g GQ) Gar . (159)

The first one, P, is proportional to G%,, whereas the com-
ponent perpendicular to the momentum transfer but in
the scattering plane, P,, contains interference of G, with
G¢ and Gg. The vector and tensor asymmetries listed in

the Appendix E do not contain additional information but
they could be used for consistency checks.

5.2 Parity-violating contributions

Parity violation gives a small contribution to the unpo-

A
larized cross-section from the E1 contribution Gg‘i =
G G4, to the hadronic neutral axial current

0
So AP+ (004) = g sec 5 tan 5 1)

2

X\/(1+77) <1+nsm —)G Ga G, (160)

and also to some recoil tensor polarization components
(see Appendix E) which, however, will be very difficult to
disentangle from the leading-order contribution. One has
to look for observables for which the leading-order contri-
bution vanishes. According to table 3, the vector polariza-
tion components provide such observables. The axial form

factor Gg“{ = G, G4, of the hadronic neutral axial cur-
rent as well as parity violation in the hadronic structure,
manifest in a nonvanishing axial form factor G, induce
vector polarization components in the scattering plane, P,
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Table 5. Schematic survey of nonvanishing tensor asymmetries Ai%;‘ (I'M'sigy,) for I' > 2.

and P, [6]. They are given by

2
Sy P, = \/;so APT(10+)

Type Current 20+ 214 21— 294 29
PT-conservi
A30+ (I'M'sig,,) conserving V4 Vv v
P-violating Vv Vv
AZH (I' M'sig 1) PT-conserving Vv v
P-violating Vv v
A (I Msig ) PT-conserving J
Azg+ (I'M'sig /) P-violating v i v
T-violating Vv
P-violati
Aiiﬁ (I' M'sig ;1) violating Vv V
T-violating v v
AZTH(I' Msig ) P-violating J
identifications:
22
GOEGCa G2E nGQv GIEGM7

;77 (1 +2(14n)tan? g) (G}E1 +G, G§1> Gu

4
— — tan —
+3sec2 an2n

0 ~
x\/(1+n)(1+nsin2§)ggGaGﬁ4, (161)
b

V3
4 0 .50
=3 sec§ 77(1+7751n 5)

< (G + GG ) (Go + 1 Ga)

So AP T (114)

8 0

— § tan 5

Obviously, these observables allow one to determine only

the combination of the axial form factors G}, + G, G4,

However, one has to keep in mind that contributions pro-

portional to G, are suppressed by (4 sin®6fw — 1) com-
pared to those proportional to éa.

The same combination of the axial form factors G},
and G4, leads also to a nonvanishing asymmetry of the
differential cross-section with respect to longitudinally po-
larized electrons without deuteron polarization [5,6] ac-
cording to

n(1+1) giGa(Got+3Gq ) Gar. (162)

~ 8 0 %)
SOA22+(OO+) = QggGa So + 3 sec§ tanin

0

X\/(l ) (1 + 7 sin? 5) (G]ﬂ +G, Ggl) G . (163)

With respect to the neutral hadron current contributions
to the asymmetries in (161), (162), and (163), these ex-
pressions agree with those of [6] if one makes the following

(164)

Another contribution from P-violation via the larger

A ~
form factor Gg‘i = G, G4, to observables, depending on
the electron polarization, appears for the recoil vector po-
larization P,

S() A22+(10 +) -

2 0\ ~
\/;n (1 + 2 (1 4 7n) tan? 5) GG Gar, (165)

which, in principle, would allow one to determine sepa-
rately the neutral current axial form factor G4,. However,
like A%? (00 +) this observable will be buried by the lead-
ing order of (158). This is a general feature as a closer in-

spection of Appendix E shows, whenever G}ZE‘? =G, Ggl
contributes to a polarization observable there is also a
leading-order contribution. The reason for this feature is
that these terms arise from the interaction of the axial lep-
ton current with the axial hadron current which is equiv-
alent to the interaction of the lepton and hadron vector
currents.

Finally, the tensor recoil polarizations offer another
possibility of obtaining a clean access to P-violation via
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the axial form factors, i.e.

8v2

SOA22+(20+)=——gyGa(Gc+gGQ>G

V2 20\ 4z 2
—?77(14‘2(1‘*‘77) tan §)vaaGM

20V 0. ¢ L0
—Tnsecﬁtani\/(1+n) <1+nsm 5)
X (GZH +G, Ggl) G, (166)

SO A22+(21 +) -

8 secg (1+ 7 sin®
/3 n B n n

4 0 ~
+ogntang a0 (Gl + GGy ) Go, (167)

9 _
So AN T(22+4) = ——=ngl G, G, -

V3

0 -
i)gg GaGuM Gq

(168)

5.3 T-violating contributions

Looking at the tables 3 through 5, one notes that T-
violation induces very few nonvanishing observables. How-
ever, these appear always isolated, that means, they do
not have to compete with leading order contributions or
those from P-violation. The simplest candidate is the re-
coil vector polarization component P, perpendicular to
the scattering plane [7-9], which is glven by

1
%SO AT (11 )

o 0 PR A
=g secy n(l—l—nsm §)GE2GQ. (169)

The latter result corresponds to the one given in [7,9] if
one identifies the additional form factor G of [7,9] with
%G}gz. With electron polarization one finds only one

contribution from T-violation to the scalar asymmetries,
namely to the tensor recoil polarization

So A% (21 ) =
Al marma (Gc+ Ly )

With this we will conclude the formal study of polarization
observables in elastic electron deuteron scattering.

Sy Py =

(170)
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Appendix A. Symmetries and closed form of
ula\M); ™M(c’s c)

Here we will derive the various symmetries listed in (82)
through (84). We will start by considering first the sym-
metries of the ¢-matrix elements given in (53). For the
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reduced multipole matrix elements one finds as symmetry
properties

(02 ()" = () O}(e), (A1)
O}(e) = () 0p N e), (A.2)
O}(e) = (—) LA 0) () (A.3)

which follow from hermiticity, and from parity and time
reversal transformations, respectively. First we note

(tfn’/\m)* =

(_)1—m/+>\ ax Z iL(
L

Using hermiticity and time reversal properties from (A.1)
and (A.3), yielding (O} (c))* = (—)L+od O3 (c), one finds

(05 @ e

(term)™ = ()% £ am (A.5)

which means that all -matrix elements are real or imag-
inary quantities depending on whether (—)53 = =41, re-
spectively. From this relation and the fact that the matrix
elements of the statistical tensors are real follows directly
(81), which means that the U’s are real or imaginary de-
pending on whether (—)% +30 =
we consider

c m 1 _
t_m/_)\_m = 1+ A ay Z LL < _)\ m) OLA(C)
—m L 1 L1 _ <\
— (P aY kL (_m, f ) @) (a0
L
where in the second expression we have made use of the
symmetry of the 3j-symbol. This then gives the relation
c C * P
t—m’—)\—m = (_)JC ( m’)\m) = ( )JC tm ‘Am
using (O7(c))* = (—)% O} (c) from (A.2) and (A.3). The
same relation can be applied to (A.4) together with the

symmetry of the 3j-symbol with respect to a sign change
of all projections, resulting in

+1, respectively. Second

(A7)

(t;’)\m)* :( )6P m—Am/ * (A8)

Now we are ready to prove the symmetries of the

UN M ( ¢). First we consider the interchange A < X

which gives
U™ (de) =

X E ( /)\n 7—]\/[/

’I’L’I’me

\./©|>—‘

n'm’ tfn'k'm (T][\/I[])nm + (C/ = C)) . (Ag)

Using

(i) mn = (M () (A.10)
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and renaming the indices, one obtains the symmetry of one obtains in closed form

(82)

UNAM (e = ()M (UM ()

= (- ),\ +’\Z/{’\ MM/

(A.11)
c,e), (A.12)

where the latter follows from (80) and (81). The second
symmetry refers to the sign change of the various projec-
tions

X Z (tc*N

n’,n,m’,m

Novm s (T )i 4 (¢ C)),

_1
6
I')
—M’

(A.13)

Changing the signs of all summation indices, using (A.7)
and the property

() —men = (D T n

results in (83). Finally, considering

(A.14)

/ 1
Z’lIAA?I M (Clac) = 6
xS (ton A im tanan (A n + (¢ 0) ) (A.15)

n’,n,m’,m

making for the summation indices the interchanges m’ <
m and n’ < n, using (A.10) and (A.7), one first finds
u])\/)\I/M/(C/ C) —

(— )6PT(c c)+I+I/u ,\’ ,\I M(

d,c), (A.16)

which gives combined with (83) the symmetry of (84).

At the end of this appendix, we will derive a closed ex-
pression for UMMM (¢, ¢) in terms of reduced multipole
matrix elements. To this end we use the multipole expan-
sion of the t-matrix and the Wigner-Eckart theorem for
the occurring matrix elements of the multipole operators
and statistical tensors

<1m’|02M1m>=<—>1-"“( LoL1

o Mm) Oy, (A7)
(1! |7i [1m) = (=)= ( o >fI (A.18)

With the help of a sum rule for a sum over four 3j-
symbols [13]

st 1 1] _
AN MM |~

5 (o1 EL)(
n’,n,m’,m -m m
y 1 11 1 I' 1
-m Mn —n' M’ m'

(L L I 1 J le
*Z /\/\’ M -M'm)\ ||

1 L'1
' Nn

~

J
I % (A.19)
II

1
UNIM( o) = (=) 2%,@11’ S HTELLS
L', L

[i i/l J\I4 ]\1-4/’} (OL/'*(C/) 07(c) + (¢ < C)) . (A.20)

Appendix B. General expressions for the
f-functions

Here we list all nonvanishing f-functions for the case
of recoil polarization without target polarization, i.e.,
JOF(I'M'sig,;; ¢, ) for the various diagonal and inter-
ference contributions.

(A) Diagonal contributions:

(1) ¢, ¢ € Cpe, te:

00+ (00+; ¢ ¢) = — (Co(c) Co(c')+Cs(c) cz(c/))(m)

00+(20+ d C) 7T (200(0/) 02(0)

+200(¢) Ca(') + V2 Ca(c) cg(c')), (B.2)
WOF00+; ¢, c) = %”Ml(c)Ml(c/), (B.3)
WH(204; ¢ c) = —@ My (c) My (), (B.4)
0T (1045 ¢ e) = \/gle(c) My (c), (B.5)

00+ (914 ¢, ) —27r(C’2( 'Y Mi(¢)+Cs(c) Ml(c’))(B.G)

101145 o) = in ((2\/§Co(cl)+02(c’))M1(c)

+(2V2Co(e) + Ca(e) Mi(€)), (B.7)

00 2m /
P (2245 de) = \/ng(c) My (). (B.8)

(ii) ¢, ¢ € Cpe, tne:
WH00+; ¢, e) = 4% Es(c) By (), (B.9)
WH20+; o) = —@ Es(c) Ey(c), (B.10)
10T (1045 ¢ e) = \/EWEQ(C) Eq(c), (B.11)
00 / _ 2_7T c Cl

(224 o) = ﬁEQ( ) Ea(c). (B.12)

(iii) ¢, ¢ € Cpne, te:
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00+(OOJr d,c) = %El( ) E1(c)
OO+(20+ ¢ C) —%Eﬁ( )El( )

2
f,}00+(10 +’ CI7C) = \/;WEI(C) El(c/)7

00+(22+ de) = _2—\/7§E1(0)E1(c/).

(iv) ¢, ¢ € Cpne, tne:

0+(00+; ¢, ) = ?C’l(c) Ci(d),
0420 +; ¢, ¢) = 2?” Ci(c) Ci(d),
0400 +; ¢/, ¢) = 4% M;(c) My ('),
00+(20_|_ d.c)= _@ Ms(c) Ma(c'),

2
%004-(10_'_; d,c) = \/;WM2(C) M(c),

DO 2145¢c) =

7

(B.13)
(B.14)

(B.15)

(B.16)

(B.17)

(B.18)

(B.19)
(B.20)

(B.21)

2 (0 M)+ Cr() M) (B.22)

“Wnﬁ,>¢4am A€)+Cile) Mo).(B.23)

00+(22+ d,c)= ——Mg(c) My(c).

V3

(B) Interference contributions:
(1) ¢ € Cpe,tc and ¢ € Cpe, tne:
281+(11 s Cl) C) =27 CQ(CI) E2(c)7

P 1scl o)

(ii) ¢ € Cpe,tc and ¢ € Cpne, te:

2
WHA0+; ye) = \/;WEl(C) M (),

4
fé*00+(00+; 0’70) = %El(c) Ml(cl)v

2
(204 &) = ﬂ”

L (145, ¢) =

/00+(21+ d C)—27TC2( ) (C)

(iii) ¢ € Cpe,1c and ¢ € Cpne, tne:

— El(c) Ml(C/),

(B.24)

(B.25)

%” (2v2C0( )+ Coe') ) Bxfe). (B.26)

(B.27)

(B.28)

(B.29)

2m (2\/500(0’)+C’2(c’))El(c),(B.3O)

(B.31)

21— o) =

-2 (VBCi(e) M ()

~(2v200(e) + Ca()) Mafe)),

00
LT +(11

dc)=

? (ﬁ Ci(c) My(c') +3Ca(c)) Mz(c)),

%%’+(22 ) Clv C) =

(iv) ¢ € Cpe, tne and

WrR2—; ) =

2m ,
ﬁ Ml(C)Mg(C).

ce Cpnc7 tct

2m ,
—% El( )EQ(C )

(v) ¢ € Cpe, tne and ¢ € Cpne, tne:

WH(10+; ¢ e) =
2000+ ¢, e) =
020+ ¢, e) =

V(11 +; dye) =

190 (2145 e) =

(vi) ¢ € Cpne, tc and

cE Cpnc7 tnc*

2
0+ (11—; ¢, ¢) = Z= Ci(e) Er (),

V3

2
190+ (21 —; ¢, ¢) = ——= () B (¢').

V3
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(B.32)

(B.33)

(B.34)

(B.35)

(B.36)

(B.37)

(B.38)

(B.39)

(B.40)

(B.41)

(B.42)

Appendix C. Listing of structure functions

including P- and T-

Here we list all

nonvanishing

violation

structure functions

FAMsien (I' M'sig,,.) and FIMsien (I' M'sig,,/) for sig,, =
+,I'">1,and M’ > M. Those for I’ < I, and M’ < M
as well as the ones for sig,; = — can be obtained from
the listed ones using the symmetry relations in (100),
(104) and (105). Note that sig,, is fixed uniquely with

the choice of sig,,.

(i) P- and T-conserved structure functions:
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FOr004) = 27 () + (037?). ()
FO+(204) :_2%0; (4cg+\/§c;), (C.2)
FlO+(104) = %” (vacg - 03)2, (C.3)
Filtt(11+4) = %ﬂ (2 (CI* V207 CF —2 (Cg)Q),(CA)
F20+(20 1) %ﬂ (2(03)2+2 Nelent C;+3(C;)2) (C.5)
F2H(214) = %ﬂ (2(c3*+vacy cg-2(c3)?) (C)
F2+(224) = %” (vacg - 07) (C.7)
F+(00+) 4?” (M7])?, (C.8)
EXT(20+4) = —@ (M7)?, (C.9)
FRMY(A14) =27 (M])?, (C.10)
FPT(20+) = —%ﬁ (M7])?, (C.11)
F2HH (21 4) = 27 (M])?, (C.12)

E[PT(10+4) = \/gw(M;)% (C.13)
110 + 27 vy
E[Y%(204) = 7 (M7)?, (C.14)
EMH(214) = 27 (M])?, (C.15)
FY9T(214) = 47 0y MY, (C.16)
2
FLO4(114) = 77;) (—203+\/§c;) M, (Ca7)
F2F(214) = —27 (2 cy + \/icg) MY, (C.18)

F2iH(22+4) = 2\/gqr(—2cg + ﬁc;) My, (C.19)

4
Fipt(i+) = 37r (2 V20] + 07) My, (C.20)
FLO+(214) = 2 \/gw (\ng - c;) MY, (C.21)
2
FiR*(204) = -5 (260 +5V2C3) M}, (C.22)

Flp T (224) = -2 \/gw ( -2C7 + \/503) M7} (C.23)
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2w
F2t(22+4) = 7 (M), (C.24)
Frpt(11+) =27 (M7)?, (C.25)
2

Frpt(22+4) = -2 \/;T(Mﬁ)z, (C.26)
FZP(21+4) =27 (M])% (C.27)

(ii) P-violating structure functions:
EOH(10+) = Q\EW (E} +Eff) My, (C.28)

47 ZA
FPH(20+) = & (7 +BL) 0y, (C.29)
FR*H(214) = dn (B] + B ) M3, (C.30)
Fr%7(00+) = 8% (&7 + Efff‘) M7, (C.31)
Fqi00+(20+) = -2 Q (E;’ + EIZ;A) M;’, (C.32)
F{U*(114) = 4n (EW + B ) My, (C.33)
Fp2%(204) = 8; (E7 + B ) My, (C.34)
FI2 (21 4) = —4x (E; o ) My, (C.35)
For(11+) = % (B7 + B (27265 + ¢7) (C:30)
FiSFe14) = 775 (B + B0 (Vg - 3), (ca7)
A

FHA204) =25 (E7+El ) (2¢3+5vacy) (C.38)
Fit(22+4) = (W+a)Q@@—@)@w)

Fl0O+(214) = 4n (E7 + BZ% ) o3, (C.40)

F/YOF(114) = (E’Y+E )(\fc7 c3),(C.41)
F/2+(21+4) = —2\f7r(E”+E1 ) (vVacg+cy) (ca2)
475 (E;UrE1 ) (vaci-c3).(ca3)

(iii) T-violating structure functions:

F/21T(224) = —

Fi*H(21-) =47 E) M}, (C.44)
EJMT(11-) =47 E) M), (C.45)
E[2 4 (21 -) = —4n E) M}, (C.46)
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FYF(11-) =470y E], (C.47)
4
Fl9H(21—) = —771 (vacy-c3) B3, (C.48)
47
Fll*(22-) = = (f 207 — 07) E), (C.49)
4
F/O%(21-) = 3” (2v2cg +c3) B3, (C.50)
4
FlRH(11-) = 771 (\/503 - C;) Ej, (C.51)
2
F/2%(21 ) = ;f (\Fc7 + 50”) Ej, (C.52)
4
F/21 (22 ) = —77% (\/icg - 0;) Ej, (C.53)
FLLt(21—) =4n E] M. (C.54)
iv) P-violating structure functions F:
(iv) g
ﬁ00+(00 4= 8—” (3 cZ 4 oy 0225‘), (C.55)
(20 3+ (207 +v2cg) aff), (C.56)

A A
Flo+(104) = 27 (\/ﬁcgfcg) (Ve —ci). 1)
~ A A
FPH(114) = g(c;(\/icozv —4057)
A A
+03 (105 +vacsT)), (C.58)
~ 4 A A
F+ 04 = 5 (c3(vacy™ +3c)
A A
+3 (205 +v2cs)), (C.59)
~ 4 A A
FPrei+) = (c3(vact —aci?)
A A
+c3 (105 +vaciT)), (C.60)
~ 8 A A
FEro24) == (vaci-c3) (vacs —ci )(c.on)
700 + 87 . 1y
FPOH(004) = =0 M M7 (C.62)
7500 + 2 zi gy
FO+(104) = 24/ s m BY* ], (C.63)
FX+(204) = —i x MY MP (C.64)
EN*H(204) = 4” EZ My, (C.65)
V3
Fl*+(11+4) = 47TM’Y M7, (C.66)
Fl'*(@214) =4xE Mf, (C.67)
FPH(20+4) = —%ﬂ My M7 (C.68)
FAT(214) = —47 M} MIZ“ , (C.69)

199
F0%(00+) = %EIZ? M7, (C.70)
- 2
EOF(10+) = 2\/;71' My MF (C.71)
FLO0F(204) = _2v2r Efff‘ M7, (C.72)
- 4
ELOF(204) = 771 My M7 (C.73)
FLUH(114) = d4n EZ MY, (C.74)
ELMT(214) = 47 M) MPT (C.75)
FL2+(204) = —8—” EZ (C.76)
E[2 T (214) = —47rE1 “ oy, (C.77)
. 4
Fhr1+) = 5 (27207 +63) B, (C.78)
FOF(214) =4n (02 M) +Cy M ) (C.79)
~ .A
Fl9+11+4) = 2\[ ((vacy —c)ap
+(vacy - cg) mi” ) (C.80)
~ 47‘( ZA
Flo+(214) = 7 (v2ci - c3) B7, (C.81)
4+ _2m y V207 2
Fipto+) = -5 (20 +5V2C] ) EZ (C.82)
- 4
Fllt(224) = \/% (2¢3 - v2cy) EZ, (C.83)
~ A A
FEF1+) = —2v2r (V2Cy + ¢ ) gy
+(vaoy + ey )i, (C.84)
~ 47 ZA ZA
Fpt24) = - 2 ((vaes® —of )y
A
+(\/50g - Cg) M7 ) (C.85)
- 2/2
F/0OH(114) = Tf 7 ((400254 + \/50225‘) MY
A
+(4 cy + \/icg) M7 ) (C.86)
F/9+(914) = 47 0] B (C.87)
- 4
FI0+(11 4) = _7% (vacg-3) EZ, (C.88)
~ 2 A A
FLOF(214) =2 \/;T ((vaed™ - i)y
+(v2cy - 3) M7 ). (C.89)
- 2
P/ @204) = ——\/— w ((\/500251 + 50554) My
A
+(¢§03 +503) M), (C.90)
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Fla+(224) = 4—\/2 ((vacy —c)ap
(\fc” ) ) (C.91)
F/2%(214) = =227 (\fc” + C”) . (C.92)
F/2+(224) = _ﬁ = (vacy-a3) EZ, (0.93)
F2+(224) = 4—\/2 My M7 (C.94)
FILF(114) = 47 M) M7 (C.95)
FOF(224) = —4 \/zw My ME (C.96)
F2F (21 4) = dn M) M7 (C.97)

Appendix D. Listing of various asymmetries

M
Here we list all nonvanishing asymmetries A, djed MgM .

(I'M'sigy,.) for sigy; = +, I' > I, and M’ > M. Those
for I' < I, and M' < M as well as the ones for sig,; = —
can be obtained from the listed ones using the symmetry
relations in (100), (132) and (133). Note that sig,,. is fixed
uniquely with the choice of sig,,.

(A) Asymmetries for P- and T-conserved contribu-
tions:

(i) Scalar asymmetries:

4
So AP H(00+) = = ((CF)2 +(C9)?) v
+43” (M])2 vy, (D.1)
So AR (20 4) = 23” (40”\/_07) vy
—@ (M7)?vr, (D.2)
So A20+(21 -l—) = 47TC; Miy vLT (D3)
2T
So AP (224) = 7 (M])?vrr, (D.4)
2
So A% (10+) = \/;W(Mg)%qc? (D.5)

2\/§7r

So Al (11 +4) = (4€3+v2C3) M vf7.(D.6)

(ii) Vector asymmetries:

2
So ANF(104) = % (\/503 - c;) oL, (D.7)
2
So A;0+(11 +)=-2 \/;w (\/503 -9 )M} vrr {D.8)
11+ Am 742 Y vy 72

Sp AL (11 4) = ?(2(00) V207 —2(CY) )vL

+27 (M])? (vr + vrr) (D.9)
So AegF(20+) = 771 )2 v, (D.10)
SoAif(?H)*?ﬂ ) vy (D.12)
So AggT(22+) = ﬁ (\/503 - C;) M v}p. (D.13)

(iii) Tensor asymmetries:

50 A2 (204) = 2T ((VEO] +C3)? +2(C3)) we

4
—= (M) vr,
So A2 T(214) = 227 (\/503 + C;) M vrr (D.15)

(D.14)

2
So A2 F(224) = -2 \/;w (M) vrr,

4
= (2@ +v2cieg—2(c3)?) v

(D.16)

So A?ll +(21 +) -

=27 (M7)? (vr — vrr), (D.17)
4
So A2 F(22+4) = _\/—g (\/503 — O;) M vrr, (D.18)
4 2
So AT H(224) = 5 (V2CT = CF) uw (D.19)
(B) Asymmetries for P-violating contributions:
(i) Scalar asymmetries:
400+ 87 _zA
So AP T(004) = = Bf* M vf., (D.20)
2 v
So AL (10+) = 2\/;7r (B0 + L) My or
2
+2 \@ x MY MP (D.21)
4n

So AW F(11+) = (EHE1 ) (2v2¢3+C3) our

3
S22 (ae e vacs)

+(4¢3+v23) Mff) vlr, (D.22)

24/2 A
So A30+(20 +) = _T\/_ 7rE1Z“ M vy, (D.23)
A
So AL+ (214) = 47 C) EX% v, (D.24)



H. Arenhével, S.K. Singh: Polarization observables in elastic electron deuteron scattering... 201

So A%+(00+) = (C”C +oy o )vL
8 T My MP o +8—(E7+E )va}, (D.25)

SOA22+(10+) = 2\/;775712& M] vr,

4 A
= (2v203+¢3) B vir, (D.27)

(D.26)
So A22+(11 +) =
So A% H(204) =
47r

(20 0y +20) 7 £ V20)C )UL

2/2
1 TfT\/_w<E7+E )M%T, (D.28)

So A22+(21 1) =dn (CQZv MY+ 0y M7 )our

Y zY 7
4 (E1 + B ) C3 vl (D.29)
47
Sy A% F (22 + M”M D.30
0 Aeq ( ) \/g ( )

(ii) Vector asymmetries:
2 A
—2\/;7r (\/5 Co— C’;) Efa ) . (D.31)

47 47 4
E + EZ )M% + 2T
\/5( RV

So AXF(21 1) = Q\Eﬂ (B+EZ) (V2C3-C )onr

H[ ((vac -

So AL T(114)=
So AL (20+) =
* M7 ok, (D.32)

o) i

+(v2cy - 3) M1 : ) vip, (D.33)
S Al F(114) =4x EFA M7 v (D.34)
So AT (214) =

s (B) + B V)MVUT+47rMA’M ., (D.35)
So AL+ (22 1) = 3%<E7+E )(\/icg—c;)vm

+4_\/7§: ((\/500254 - szf‘) M

+(v2cy - 3) Mff) vl (D.36)
So AT (10+4) =

%” (vacy - c3)(vacl” —cfYor, (37)
SOA;3+(11+)——2\EW((\/EC?—sz)Mg

+(v2cg - c3) M Y our

—2\/2 (E”JFE1 )( )viT,(D.?)S)

47

So AT (204) = Nk Bl M” vr, (D.39)
So At (214) =2 \/gw(\/i CJ—CQ)Eff vy ,(D.40)
So AL+(11 1) = ?” (Cg (40025‘ " \fgczzf‘>

ey (\/icozf - 402254)) VL

+4m (E;* + Elzl}) M v

dw MY MP (op +opr), (D41
So AU+ (21 4) = 47 BZ M vy, (D.42)
SoAegT(22+4) = 477% (\/563 -3 ) EZ vy, (D.43)

(iii) Tensor asymmetries:

S0 A%+ (204) = = BT M7 o, (D.41)
So AP F(214) = —27 (2 C3 +V2C3 ) B v 7, (D.45)
So A2 (21 +) = —aw B M” v (D.46)
Sp AT (224) = il/g ( V207 + C”) Efa vm(D 47)

4
So A% (204) = 5 (¢f (2687 +v2el”)

+C3 (ﬂcfﬁgcff))m_%”wM

83” (E” + B ) M7 vl (D.48)
A A
So A2 (21+) = —2v2r (V2T + ¢ )y
A
+(V2Cy +CF) M ) vy
%
27 (E; + Efa) (2 7+ ﬂc;) vlp,  (D.49)
S A20+ 2 Y Z:;A
0Agg (22 —|—) =—4 § 7TM1 Ml vrT , (D50)

So AL (21 ) = 4?” (2 (40025‘ + \/icff)

A A v
+03 (V2G40 ) Yo — dr (BT +EL ) M vy

4 MY M7 (o — vpr) | (D.51)
4 ZA ZA
So AZyT(22+4) = 7 ((\/500“ -Gy ) My
A
+(\/§C’Y — O;) Mlzv ) VLT
AT oy y LA
-7 (E + BZ ) (\/500 - 02) vy, (D52)
SQ A552l+(22 +) =
8 A A
= (vaci-c3)(vacd - )u.  (D53)
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(C) Asymmetries for T-violating contributions:
(i) Scalar asymmetries:

So AP T(11-) =47 C) EJ vir, (D.54)
4
So A%+ (21 ) = ?” (2 V20y + c;) EJvly. (D.55)

(ii) Vector asymmetries:

2
Sp ALP*(21 =)= =2 \/;77(\/5 cg-c;) EJ vpr,(D.56)
So Ayt T (21-) = dm E) MY (vr + vrr), (D.57)

4
_ 77% (ﬁcg —cy )E; vir,  (D.58)

So At (22-)
2
So AT (11 ) = 2 \/;w (\/503 - c;) EJ vy (D.59)
So ALy T(11-) = 47 EJ M vy (D.60)
(iii) Tensor asymmetries:

2T

. (2 CJ+5 \/50;) B vl (D.61)
So A1 (21 ) = —4 7 EJ MY v, (D.62)

4
777% (V2€y - C3) B3 vy (D.63)

So A291(21-)

So A2 (22-)

Appendix E. Listing of nonvanishing
asymmetries in terms of invariant form
factors as in Appendix D

(A) Asymmetries for P- and T-conserved contributions:
(i) Scalar asymmetries:

So AP+ (004) =
2 0
Go? + §n2 G’ + = (1 +2(1+n) tan —)GM2»(E~1)
9 3 2
S, AOO+ 20 + :_L
0 A T(204) 372

0
X (8(Gc+gGQ) Go+(1+2 (1+n) tan? 3) GM2> (E.2)
So AP H(214) =

4 0 . o0
%secin 7l<1+7751ﬂ 5) Gu Gg, (E.3)

So ADV+(224) = — L G2, E.4
0 Ay T(224) 5 Om (E.4)

So A% T (10+4) =
3 6. 0 L0,
\/g sec tanin \/(1+77)(1+nsm i)GM ,(E.5)
So AY) T (11+) =

4 0 n
5 ey V(L) (Go+ gGQ) Gu. (E6)

(ii) Vector asymmetries:
10 2 2
So AP +(104) = (Go - $nGa) (E.7)

So AP t(114) = —\/Qsecg n (1 + nsin? g)

2
X (Gc - nGQ) G, (E.8)
So Ay H(114) = 2 ((Ge + 3 Go)* —n* G}
+27 (1 + 1) tan® g G, (E.9)
So ANt (204) =
2

0 0 0
7 secg tan§ n \/(1+T]) (1+77 sin2§> G2, (E.10)

So AT (214) =

6 2
V2 tan 5 /0 (1+7) (GC -3 nGQ) Gu, (E11)
SoAgyT(21+) =

0 0 .2 0 2
2 sec 5 tan2n\/(1+n) (1+ns1n 5) Gu®, (E12)
So Ai;+(22 +) =

6 2
2 tan 2 /i (1+7) (Gc - nGQ) Gu. (E13)

(iii) Tensor asymmetries:
20 + 1 2 2
So AP F(204) = 5 ((Gc +20Go) +2GC)
2 2 0 2
So AZO+(21 +) = -6 secg n (1 + 7sin? Q)
2 2
2
X (Gc +t3 UGQ) Gum, (E.15)

2
So AP T(224) = \/;UGMQ, (E.16)

So A7 H(214) = 2 ((Ge + 3 Go)* —n* Gy

0
2y (1 + (1 4 n) tan? 5) G, (B.17)

0 0
21+ _ 4 .20
So A5 T(22+) = 256(;2 n<1+nsm 2)
2
X (Gc ~3 WGQ) Gu, (E.18)

9 2
So AZF(224) = 2 (Gc -3 nGQ) . (E.19)
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(B) Asymmetries for P-violating contributions:
(i) Scalar asymmetries:

8 0 0
A00+ — Z qpe — Z
So Ay T(00+) 3 5¢¢ 5 tan 57

9 A
X\/(1+n) (1+nsin2§> GZ G, (E.20)
00 + 2 29
So A%+ (10+) = g17(1+2(1+n)tam 5)
zY 2 0 0
X(G;fjl—l—GE”i)GM—&—Q\/;secﬁ tanin
9 74
\/(1+n)(1+nsm Gu Gl (E.21)

4 0
A00+ 11 _ Z
So A, T(114) 7 sec 5

% (G + G ) (Go+ 3 Ga)

n (1 + 7 sin? g)

4 0 zp n ~zt
Jrﬁ tani 77(1+?7)(<GC +3GQ )GM
A
+(GC + g GQ) ij’ ) ) (E.22)
2v2
A00+ 2 — z -z
So Ay T(204) 3 sec2tan277
0 A
X\/(lJr?]) <1+17sin27> GZ G (E.23)

So AP H(214) =

nvn (1+n) tan GElGQ7 (E.24)

So AVF(00+) = 2Go G A+—n2G Go

4
+3n(1+2(1+n) tan? f)GMG ¢

8 0 0 . o0
+§ sec 5 tangn\/(l—i—n) <1+nsm 5)

o zy
x (GE1 +G%) G, (E.25)
00 + 2
So Ae 10+ 3 n
x (142 (1 + 1) tan? 5) G G, (E.26)
4 A
Sp AL = G (Go+ 3 Go)
X secg n (1 + 7 sin® g) ) (E.27)
42
So A% T (20+) = —%(GCG + G2 GQ
2zt V2 50
+5 GG GQ) - 777(1+2(1+n) tan 5)
X G’MGf/[” — 2;)/5 sec — tan —n

X\/(l—i—n) (1+7751n —) (G%l + GEl) Gy, (E.28)

4 zA zZA
00+ _x ; 5
So A% (21+)7\/§77(GQ G+ Ghf Go)
xsecg n(1+nsin22)

4 0 v
+—=n tan 5 /i (1) (GF,+GF ) Ga ., (B:29)

V3

2 A
So A% F(224) = ——=nGu Gap .

i (E.30)

(ii) Vector asymmetries:
So APF(114) =

0
—V2 tan 5 v/ (1+mn) Gg‘? (G

So APt (204) =

n (142 (1 + ) tan? 9) (6% +GE1) G

2
c—3nGq).  (B3L)
2
V3

40 6 50 2z
+ﬁ sec tani n \/(1+77)(1+77 sin 5) Gum Gy (E.32)

S() A;OJF(Z]. +) =

0 0
V2 sec 3 n (1 + 7 sin? 5)

X(GElJrG?{) (GcfgnGQ>+\/§ tang (L +n)
x((Ggffgntf)GM+(GC—717GQ>G e3)

0 0
So Ay T(114) =4 sec 5 1) tani

9 A
X\/(l—i—n) (1+nsin2 5) Ggal Gu, (E.34)
So ALt (214) =

2n(1+2(1+n) tan? Q) (6% +GE1) G

0 0
+4 sec 5 tangﬁ\/(“‘ﬁ)(“‘ﬁ sin? —)GM GM , (E.35)

So A(lil+(22+) =2 secg n (1 +77$in2 g)
x (GYEl + G?‘I) (Gc - ;Tl GQ)
1 (1+1) ((Ggf

+(Ge - %nGQ) i),

0
2 tan —
+ an2

S0AL7104) = 2(GE- 2 GE ) (Ge 20 Go ) (B3T)
So AN (11+4) = —V2 sec g
< (62 = 2065 Gu+ (Go — 2nGa) GFF)

V2 tang n(1+n) (GYE1+G§{ )(GC— %n GQ) (E.38)

0
7 (14 sin? )
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So AXF(204) =

2 2 6 Z;“
vk (1421 +m) tan 5) G% G,
S AL+ (214) =

(E.39)

V2 secg n (1 + 7 sin® Q) fof (Gc - g17GQ>,(E.40)
2 2 3
S() Ai;Jr(].]. +) =
z3 n N~z _8
4(GC (GC+3GQ)+3GQ (GC 3”GQ>)

0 A 0 0
+4n(1+n) tan? iGMGf/}’ +4 sec 5 tan§n

. 0 VAd
X\/(l +n) (1 + 7 sin? 5) (GEI + GE“I) Gy, (E.A41)
11+ 29 ZA
So AL+ (214) = 217(1+2(1+n)tan 5) GZ4 Gr(B.42)

SoAeat(224) =

0 2 A
1 (1 + 17 sin? 7)<Gc -3 nGQ) GZ . (B.43)

0
2 sec —
2 2

(iii) Tensor asymmetries:

SO A?IO + (20 Jr) -

8 6 0 o0\ zA
—3 secg tan§ 7 \/(1+n)(1+n sin 5) G Gu,(E.44)

So AP T (21+4) =

0 A 2
—V6 tan 5 /(T +1) G (Gc +3 nGQ) . (E.45)
S() A31+(21 +) =

6 0 o0\ L zA
—4 secy tan§ 7 \/(1+77) <1+n Sm2§) G G, (E.46)
Sp A21T(224) =

9 2 o
-2 tan§\/77(1+77) (Gc— —nGQ) Gg(i )

; (E.A7)

So A25F(204) =
2(GE (Go+ ;nGQ) v ;ntf (Ge+2n6Ga))

4 50 zA 8 0 0
—37 (1—|—2(1+n) tan 5) Gu Gy — 3 secy tan§77

0
><\/(1+n)(1 + 1 sin? 5) (G’él +GJZE“{) G,

So A20T(21+) = —V6 secg \/7 (14 n sin? g)
zA 2 zA zA 2 z4
<((c? +2nGG ) Gu +(Ge G +§nGQ) i)
0 v 2
V6 tang /(L) (GG 2 )(Go+5 1 G ) (EA9)

2 A
So A2 (224) =2@nGMGf; ,

(E.48)

(E.50)
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Sp A2 T (214) =
4 (fo‘ (Go+ gGQ) + ngf (Ge- gnGQ))
—4n (1 + (1 +n) tan® g) Gu fo

2 zA 0 0
+2 \/;GMGA/; n —4sec§ tanin

. o0 zY
><\/(1+n)(1+nsm2§)(GgﬁGEﬁ)GM, (E.51)
SO Aicll +(22 +) ==

0 . 29 Z;‘\ 2 Z;‘\
-2 sec 5 n(1+n sin 5)(((}’0 —gnGQ )GM

+(Ge Gl - ;nGQ) ¢ ) -2 tang
xv/n(t+) (Gl + ag{) (G- % nGq), (E52)
SeAZ2H(22+) :4(0@5‘ - ;n e )(Gc—gn GQ). (E.53)

(C) Asymmetries for T-violating contributions:

(i) Scalar asymmetries:

So APF(11-) =

4 0 . 90

7 590577\/77 (1+nsm2 5) G, Go,
SoAggT(21-) =

40 X 1
75t V(L +1) Gy (Gc +3 nGQ) . (E55)

(E.54)

(ii) Vector asymmetries:

So AP+ (21-) =
-2 secg 17(1+7] sin2€>G'y (GcfgnGQ> (E.56)
2 2/ B2 3 ’

0
So AT (21-) :4n(1+n)tan2§G7E2 G,
So At t(22-) =
0 90N\ 2
2 sec 54/ (1 + 7 sin 5) G (GC - gnGQ) , (E.58)
5o A+ (11 ) =

0 2
\/itan§ Vn(1+n) G, (GC - §nGQ)’
So ALy T(11—) =

(E.57)

(E.59)

0 0 . o0
4 sec 3 tan 3 \/(1+77) (l-i-n sin? 5) Gl Gu. (E.60)
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(iii) Tensor asymmetries:
SoAggT(21-) =

2 0 10
—\/5 tan 5 V(L4 7) Gy (Gc +3 nGQ), (E.61)
So A2y (21-) =

6 0 o0
—14 secy tan§ n \/(1—!—7]) <1+nsm2§) Gry G, (E.62)
SoAzat(22-) =

0 2
—2 tan oV (1+m7n) (Gc - ?77 GQ> Grs - (E.63)
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